Математическая оценка качества принятого решения. Системное описание задачи принятия решений

Создание и утверждение операционного бюджета — основной этап финансового планирования в конце отчетного периода (месяца, квартала, года). Сотрудники финансового отдела анализируют объем предстоящих сделок в компании, учитывают предполагаемые расходы и доходы, постоянные издержки, уровень инфляции, курсовые разницы (если компания работает с валютными операциями).

Этапы построения операционного бюджета в компании

Бюджетирование в компании — многоступенчатый процесс, построение операционного плана также состоит из нескольких этапов.

  • Прогнозирование объема продаж на следующий отчетный период. Переменные затраты компании зависят от объема выпущенной и реализованной продукции, поэтому финансисты строят прогноз с учетом прибыли предыдущих периодов и текущей ситуации на рынке. Финансовая модель для операционного бюджета должна включать максимум внешних факторов (уровень инфляции, ставка рефинансирования, текущий валютный курс), чтобы заложить нужный объем расходов.
  • Создание бюджетов для покрытия административных и сопутствующих расходов. В зависимости от объема продаж, формируются переменные издержки (количество закупаемого сырья и материалов, фонд заработной платы для премирования сотрудников, оплаты сверхурочных и дополнительных смен). Административные расходы (оплата аренды, окладная часть заработной платы сотрудников) остаются неизменными.
  • Создание бюджетов для покрытия основных расходов на производство. Распределяются средства на закупку сырья и материалов, обслуживание и ремонт производственных мощностей, внедрение новых технологий. Расходы на производство — центральная часть операционного бюджета в производственных, инновационных и наукоемких компаниях. Торговые дома, компании сферы услуг и посредники не планируют производственный бюджет, заменяя его операционными расходами.
  • Прогнозирование баланса предприятия на будущий период. Сотрудники производственного и финансового отдела выстраивают модели развития ситуации, составляют предварительный бухгалтерский баланс (иногда — отчет о прибылях и убытках). Эти данные позволяют рассчитать показатели финансовой устойчивости компании, спрогнозировать эффективность бизнеса, заложить средства для покрытия ожидаемых дополнительных расходов.

Построение операционного бюджета базируется на статистике предыдущих периодов и экономическом моделировании. В зависимости от экономической отрасли, документ фиксируется на следующий финансовый период или регулярно пересматривается. Например, венчурные компании, выпускающие инновационные продукты, пересматривают операционный бюджет каждый месяц. Торговые дома принимают единый документ на весь предстоящий год.

Методы построения операционного бюджета в компании

Мелкие статьи операционного бюджета планируются на основе данных предыдущих периодов, затраты на операционные расходы рассчитываются по одному из методов.

  • CVP анализ — сопоставление текущих затрат, планируемого объема выпуска и прибыли. Метод используется на мелкими производственными предприятиями или новыми компаниями. Данные CVP модели позволяют рассчитать точку безубыточности, оценить объем производства и спланировать структуру продаж.
  • EOQ анализ — расчет затрат на операционную деятельность на основе оптимальной партии для поставки. Метод используются в крупных компаниях, которые работают с дилерскими сетями. Стоимость реализации одной партии товара умножается на объем поставок.
  • EPR анализ — расчет затрат на основе стоимости товарной партии с минимальными издержками (модификация анализа EOQ). Метод используется в компаниях, вынужденных хранить крупные товарные партии на складских помещениях, находящихся в собственности. Стоимость выпуска и хранения одной партии умножается на предполагаемый объем поставок.

Критерии принятия решений и их шкалы

Из схемы процесса обоснования решений, приведенной на рис. 1.5, видно, что этот процесс завершается фазой оценки альтернатив. Именно в рамках этой фазы напрямую работает принцип измерения . При этом практически неразрывно, одновременно решаются два взаимосвязанных вопроса: выработка (формирование) критерия и получение оценок критерия для каждой из сформированного ЛПР множества допустимых альтернатив.

Критерий (функция цели, показатель) - это специальная функция, заданная в номинальной , числовой или количественной шкале, областью определения которой служит множество альтернатив .

Критерий предназначен для измерения степени эффективности (вклада, полезности или ценности) каждой альтернативы в отношении достижения цели операции. Те значения, которые эта функция принимает, называют оценками критерия .

Измерение - это процесс приписывания объектам таких символов, сравнение значений которых позволяет делать выводы о связи объектов между собой. Для ТПР это означает следующее: если ЛПР удалось подобрать такой критерий для оценки альтернатив, что у одной из них оценка критерия выше, чем у других, то можно предположить, что, выбрав альтернативу с наибольшим (максимальным) значением оценки критерия, ЛПР тем самым выберет наилучшую альтернативу.

где - альтернативы; - значения оценок критерия для альтернатив; - уровни полезности для ЛПР полученных значений оценок соответственно; - символ, означающий нестрогое превосходство для альтернатив и нестрогое неравенство для оценок (чисел); Û - знак двойной импликации ("тогда и только тогда", "необходимо и достаточно").

Соотношение (1.1) следует понимать так: если какая-то альтернатива не хуже какой-то другой (в нашем случае альтернатива не менее предпочтительнее, чем альтернатива ) то значение полезности для более предпочтительной альтернативы должно быть не ниже, чем для менее предпочтительной (в нашем случае функция полезности должна иметь значение не меньше чем . При этом мы обязательно будем полагать (и это особенно важно), что и обратное тоже верно (знак двойной импликации "тогда и только тогда" в выражении на это указывает).

Именно возможность "обратного прочтения" выражения (1.1) позволяет сделать важный вывод: если найдены альтернативы, обладающие максимальной полезностью, то они, скорее всего (с точностью до построенной модели u (Х) предпочтений) будут наилучшими решениями.

Таким образом, из соотношения (1.1) немедленно следует и формальное правило выбора наилучшей альтернативы:

, (1.2)

где - наилучшая альтернатива; - множество альтернатив.

Теория измерения разработала широкий арсенал разнообразных по своим свойствам шкал для измерения значений критериев. Эти шкалы позволяют в наибольшей степени обеспечить требование высокой информативности при решении задачи выбора наилучшей альтернативы и одновременно добиться достаточной простоты и экономии средств при измерениях.

Так, если целью измерения является разделение объектов (в нашем случае это альтернативы) на классы по признакам типа "да - нет", "свой - чужой", при годный - непригодный" и т. п., то используют так называемые номинальные или (классификационные ) шкалы. При этом любые формы представления оценки в номинальной шкале, которые не позволят отождествить объекты из разных классов между собой, будут одинаково подходящими. Так, часто при моделировании предпочтений в качестве градаций номинальных шкал используют шкалу целых чисел и даже бинарную шкалу со значениями (1; 0). Например, ЛПР может допустить считать все, что "да", - это единица, а все, что "нет", - это нуль.

Над значениями оценок в номинальных шкалах можно производить любые взаимно-однозначные преобразования и при этом смысл высказываний, задаваемых выражением (1.1), сохраняется.

Если целью измерения является упорядочение объектов одного класса в соответствии с интенсивностью проявления у них какого-то одного общего свойства, то наиболее выразительной и экономной будет ранговая , или порядковая шкала. Например, если общим для стратегий осуществления экспансии на рынке будет признак "объем продаж", то имеющиеся у ЛПР альтернативы осуществления экспансии можно, например, регламентировать в порядковой шкале со значениями "высокий", "средний", "низкий". Здесь также можно присвоить градациям шкалы числовые значения - ранги. Шкала в таком случае называется ранговой . Например, если первому в упорядоченном ряду объекту присвоить ранг, равный 1, второму - равный 2, и т. д., то получим так называемую прямую ранговую шкалу . Возможно ранжирование и в обратных ранговых шкалах , где более предпочтительному объекту присваивается больший, а не меньший ранг. Оценки в ранговых шкалах допускают любые монотонно возрастающие или монотонно убывающие преобразования.

Номинальные и ранговые шкалы относят к классу так называемых качественных шкал , то есть шкал, позволяющих выносить не более чем вербальные (на неформальном, качественном уровне) оценки и суждения.

Однако в практике чрезвычайно часто встречаются случаи, когда простого, качественного суждения об упорядочении альтернатив недостаточно. Например, ЛПР для принятия решений нужно не просто узнать, что одна из альтернатив осуществления экспансии на рынке обеспечивает объем продаж выше, чем другая. Ему еще нужно получить представление о том, насколько или во сколько раз достигаемый для альтернатив уровень продаж выше (или ниже). В подобных ситуациях для измерения значений критериев применяют наиболее совершенный класс шкал - количественные шкалы .

Подклассами количественных шкал выступают интервальная шкала , шкала отношений и абсолютная шкала - самая совершенная из всех шкал. Абсолютная шкала допускает только тождественные преобразования над ее значениями. Промежуточное положение (в смысле совершенства) между качественными и количественными шкалами занимает числовая , балльная шкала. В этой шкале оценки критериев выражаются в виде чисел, баллов, начисляемых по уcтановленным ЛПР правилам.

Что касается свойств балльных шкал, то чем меньше у них градаций (например, 3-5 числовых градаций) и чем проще правила начисления баллов, тем ближе такие шкалы к качественным, ранговым. И наоборот, чем число градаций больше и чем сложнее правила начисления баллов, тем балльная шкала ближе по своим свойствам и возможностям к количественной, интервальной.

Итак, чтобы воспользоваться формальной моделью (1.2) для выбора наилучшей альтернативы, следует решить задачу измерения .

В самом начале ЛПР проводит углубленный анализ цели, проникается пониманием полезности достигаемых результатов для решения проблемы. Именно здесь, на этом шаге ЛПР работает по технологии "номинаций" в простейшей, качественной шкале. Используя вербальное описание цели операции, ЛПР тщательно моделирует цель, формально воспроизводя ее в общем случае в виде вектора требуемого результата. Затем, действуя по принципу "вот эти частные критерии отнести к оценкам затрат, а те - к оценкам эффекта, формирует в общем случае векторный критерий W. Далее проводится содержательный анализ состава и генезиса (происхождения) факторов, задающих тип механизма ситуации.

Исходя из представления о цели и механизме ситуации, ЛПР формирует концептуальное множество альтернатив , принципиально приводящих к достижению цели операции. После этого концептуальное множество альтернатив ЛПР содержательно анализируется с целью выделения из него физически реализуемых альтернатив . Это значит, что каждую из альтернатив концептуального множества ЛПР проверяет на ее приемлемость как в отношении достижения цели операции, так и в отношении удовлетворения ограничений по времени на подготовку и реализацию этой альтернативы в ходе операции и требуемых ресурсов, необходимых для физической реализации альтернативы.

Когда концептуальные оценки затрат и эффекта (то есть оценки в номинальной шкале) получены, можно уже формально отсеять менее предпочтительные из концептуальных альтернатив. Менее предпочтительными при этом следует считать те из физически реализуемых концептуальных альтернатив, которые одновременно уступают хотя бы одной из других одновременно по оценкам эффекта и затрат.

В процессе подобного "номинирования" получают физически реализуемое допустимое множество альтернатив , состоящее из "нехудших" компонентов.

Далее для каждой альтернативы из множества физически реализуемых альтернатив следует произвести измерение значений всех частных компонентов векторного критерия в более совершенной шкале - ранговой или балльной, получить оценки и сделать выводы о "тенденциях", проявляющихся в изменении значений оценок критериев при изменениях значений управляемых факторов, имеющихся в описании альтернатив.

Изученные на основе измерения тенденции будут служить главными ориентирами при проверке адекватности более тонких моделей, позволят на количественном уровне произвести сравнения оценок альтернатив.

На третьем шаге процесса измерения строят модели для измерения оценок критериев в более совершенных, количественных шкалах типа интервальных или шкал отношений. Таким образом, более точно устанавливают не только тенденции, но и пропорции в значениях оценок. На этом же шаге измерения формируют функцию полезности для ЛПР оценок критериев, также, как правило, в шкале интервалов.

Схема процесса принятия решений

Главное предназначение ЛПР и конечный продукт его управленческой деятельности - это выработка решений. Разумеется, немаловажны и другие его управленческие функции, такие, как организация взаимодействия, всестороннего обеспечения проведения операции, контроль, оказание помощи, оценка фактической эффективности операции, фиксация, обобщение и распространение накопленного в ходе операции опыта.

Схема структуры принятия управленческих решений представлена на Рис. 1.7.

Рис. 1.7. Схема процесса принятия решения.

Основу принятия всех решений на всех этапах процесса выработки решений, конечно же, составляют предпочтения ЛПР.

Несомненно, целесообразным началом процесса принятия решений должна стать формализация предпочтений .

После того как предпочтения ЛПР формализованы и получена необходимая информация о предпочтениях, переходят к следующему важному шагу принятия решений - к построению функции выбора.

Функция выбора в теории принятия решений имеет фундаментальное значение. Именно на ее построение в конечном итоге ориентированы решение задач формирования исходного множества альтернатив, анализ условий проведения операции, выявление и измерение предпочтений ЛПР.

Согласно формальному определению, принятому в ТПР, функция выбора - это отображение вида

, (1.3)

где - некоторое множество(исходное для рассматриваемого шага принятия решений), изкоторого производят выбор; - подмножество, обладающее определенными (известными или заданными) свойствами, причем .

При поэтапном получении от ЛПР информации о его предпочтениях в ходе проведения измерений вначале строится функция выбора по результатам измерения и оценки в наиболее надежной, но и менее точной номинальной шкале на основе качественных суждений о предпочтениях. В результате из исходного множества А альтернатив получают первое представление искомого подмножества альтернатив , в котором содержится наилучшая альтернатива .

Если ЛПР, проведя неформальный анализ подмножества , еще не смогло определиться в выборе , то следует продолжить построение функции выбора. Для этого ЛПР должно уточнить измеренные предпочтения, применив для их измерения более совершенную, например порядковую или балльную , шкалу.

В результате уточнения вида функции выбора будет получено в общем случае иное подмножество альтернатив, причем . Теперь ЛПР должно сосредоточиться на анализе этого последнего множества , так как опять-таки наилучшая альтернатива содержится именно в нем. Затем при необходимости можно вновь уточнить предпочтения ЛПР, измерив их в какой-либо из пропорциональных шкал, и так далее до тех пор, пока ЛПР уверенно не остановится в выборе наилучшей альтернативы .

Следует иметь в виду, что конкретный вид функции выбора, реализующий отображение (1.3), зависит от того, каков механизм ситуации.

Это обстоятельство отмечено на схеме Рис. 1.7. вариантами построения функции выбора с детализацией их по типу условий неопределенности: в условиях стохастической неопределенности , в условиях поведенческой неопределенности и в условиях природной неопределенности .

Целевое различие в использовании скалярного и векторного критериев определило необходимость отображения на Рис. 1.7 в общем случае двух вариантов формы исходных данных и процедур для построения функции выбора - по скалярному или векторному критерию.

Получение информации

Процесс принятия решения требует по возможности полного объема информации как о самой управляющей системе, так и о среде ее функционирования (окружающей среде). Без информации такого рода невозможны анализ условий принятия решений, выявление механизма ситуации и формирование исходного множества альтернатив . ЛПР должен быть проведен содержательный анализ информации об условиях осуществления операции, получены надежные представления о механизме ситуации. Только обретя эту информацию, ЛПР сможет с позиций системного подхода не только вербально описать основные (ведущие) факторы, способствующие и мешающие формированию успешного исхода операции, но и формально оценить степень их влияния на результативность исхода.

Для этого необходимо точно понять, какая информация, какого качества и к какому сроку нужна. Результат этого промежуточного решения (содержание, требуемые точность и надежность информации, оперативность ее получения) поможет ЛПР осознанно выбрать один из доступных источников информации и принять решение. Схема классификации возможных источников и способов получения информации приведена на Рис. 1.8.

Рис. 1.8. Концептуальная схема классификации возможных источников и способов получения информации.

Из анализа схемы на Рис. 1.8. следует, что принципиально существует лишь три источника информации:

· эмпирические данные;

· знания, личный опыт и интуиция ЛПР;

· совет специалиста (экспертиза).

Ясно, что практически чаще всего люди черпают информацию из собственного опыта и знаний, а собственная интуиция помогает им заполнить пробелы в позитивном знании.

Кроме этого имеются еще две принципиальные возможности: поискать необходимые сведения в одном из "объективных источников", где зафиксирован исторический опыт человечества (эмпирические данные), или обратиться к "субъективному источнику" - к знаниям, умениям и навыкам признанных специалистов своего дела (экспертам).

В ТПР считают, что эксперт - это человек, который лично работает в рассматриваемой области деятельности, является признанным специалистом по решаемой проблеме, может и имеет возможность высказать суждение по ней в доступной для ЛПР форме.

Эксперты выполняют информационную и аналитическую работу на основе своих личных представлений о решаемой задаче. В общем случае представления экспертов могут не совпадать с мнением ЛПР. Такое расхождение во мнениях играет как отрицательную, так и положительную роль. С одной стороны, при несовпадении мнений затягивается процесс выработки решения, но, с другой - ЛПР может критически осмыслить альтернативную точку зрения или скорректировать собственные предпочтения.

Чтобы повысить личную уверенность в том, что специалист дал ему правильный совет, ЛПР может обратиться не к одному, а к нескольким экспертам. Соответственно, различают индивидуальную (один эксперт) и групповую экспертизу. Если вопрос строго конфиденциальный, время лимитировано или нет возможности спросить у нескольких специалистов ответа на интересующий вопрос, то индивидуальная экспертиза - наилучший способ получения информации. Но если перечисленные ограничения не являются существенными, то, несомненно, групповая экспертиза - в целом более достоверный и точный способ получения информации.

В то же время в ходе групповой экспертизы возможно несовпадение субъективных суждений отдельных специалистов. В связи с этим требуется предпринимать специальные приемы обработки экспертной информации с целью повышения надежности результатов.

ТПР разработан специальный комплекс организационных, технических и математических процедур, придающих стройность и логическую обусловленность всему процессу получения, обработки и анализа групповой экспертной информации. Этот комплекс процедур, включающий экспертизу (то есть сам опрос экспертов) лишь как один из этапов получения информации, в ТПР получил название метода экспертного оценивания .

Исторически накапливая знания, научившись письменности, люди стали фиксировать свой объективный опыт. Всю полезную информацию стали заносить в той или иной форме на специальные носители. Вначале эти носители были несовершенны (например, рукописи, книги) и малодоступны, однако постепенно они приобрели более совершенную форму, а с развитием печатного дела превратились в библиотеки, в банки данных (БнД), базы данных (БзД) и базы знаний (БзЗ). Процесс поиска общедоступной информации стал более удобным, эффективным и даже творческим. Но в это же время какая-то информация и какие-то источники информации становились недоступными широкой общественности. Поэтому в том случае, когда ЛПР в силу разных причин не может найти необходимую ему информацию в общедоступных источниках, ее приходится активно добывать. Чтобы добыть недоступную информацию, ЛПР может организовать и провести натурный или модельный эксперимент , может прибегнуть к помощи разведки или применить какие-то спецсредства.

Разведка или спецсредства требуют значительных затрат; то же относится и к эксперименту, особенно, если эксперимент масштабный и проводится в условиях действия неоднозначного механизма ситуации. Поэтому, чтобы сэкономить средства, целесообразно провести строго научное планирование эксперимента , количественно установить его параметры, оптимальные в отношении эффективности будущих решений и действий ЛПР.

Значительные теоретические успехи достигнуты в деле планирования экспериментов на математических моделях с применением компьютеров. Аппарат математической теории планирования в основном ориентирован на исследование случайных механизмов ситуации. В то же время он нередко бывает полезным и в других ситуациях.

Рассмотрим постановку задачи планирования эксперимента.

Если целью исследования является максимизация полезного эффекта эксперимента при ограничениях на затраты, а сам полезный эффект соотносится в сознании ЛПР с обеспечением экстремума (например, максимума) выходного результата, то задача установления оптимальных параметров эксперимента сведется к стремлению максимизировать выходной результат при ограничениях на затраты. Например, если нужно увеличить выход некоторого полезного вещества в процессе химического производства, а объем выхода зависит от таких важных параметров, как температура, давление и т.п., то постановка задачи планирования эксперимента по выпуску химического продукта может выглядеть следующим образом: найти оптимальное сочетание перечисленных управляемых переменных процесса химического производства, которые обеспечивают максимальный выход готового продукта требуемого качества, при условии, что затраты на проведение эксперимента не выше отпущенных на него финансов.

Примерно по такой же схеме формулируется постановка задачи на получение информации и в том случае, когда эффект отождествляется с точностью предсказания выходного результата, то есть с величиной ошибки воспроизведения механизма ситуации, а также постановка задачи, в которой целью ЛПР является стремление к минимизации затрат на моделирование при обеспечении уровней притязаний ЛПР на ожидаемый эффект.

Специалисты по информационным системам считают, что состояние любого объекта управления можно охарактеризовать некоторой неопределенностью, или энтропией (H0 = -logPo), выступающей в роли информационного потенциала, обусловливающего переход системы в другое состояние, т. е. наступление какого-либо события, вероятность которого равна P0 .
В практической деятельности целью всякого управляющего является изменение состояния системы, т. е. оказания воздействия, приведшего ее к новому устойчивому состоянию (событию) Руст, которому будет соответствовать другое значение информационного потенциала (Нуст = -logH^), где Руст - вероятность события от приложенного управляющим воздействия на систему.
Тогда мы можем утверждать, что сущность управления, осуществляемого источником информации (руководителем), можно охарактеризовать некоторым информационным напряжением
(4.11)
P ст
DHопт. _ H0 Hуст.
= = DJ упр 5
P
т. е. DHопт »DJупр.
Таким образом, руководители, занимающиеся производственной деятельностью, являются источником управляющей информации. Это следует понимать таким образом. Руководитель человеко-машинного комплекса или ОТС должен обладать таким потенциалом (источником информационного напряжения), которое равно логарифму отношения вероятности правильно принятого решения (Р0), приводящего к вероятности перехода системы в устойчивое состояние Руст, функционирование которого будет осуществляться без дополнительного воздействия на объект управления. Или, другой пример, пусть проректор по информации является источником управляющей информации для всех вычислительных подразделений, имея информационное напряжение, равное вероятности выполнения плана информатизации УлГТУ без дополнительных средств.
Из вышеприведенного следует, что информационное напряжение, т. е. суть источника АН, может быть как положительным, так и отрицательным. Если Руст = Р0, то напряжение источника равно нулю (АН = 0), и тогда роль руководителя в управлении несущественна, бессмысленна, т. е. он не управляет процессом.
Важно теперь то, что мы можем перейти от содержательного описания процесса управления к математическому, но для этого необходимо выбрать единицу измерения информационного потенциала, отождествляя формальное описание энтропии с информационной энтропией и в зависимости от выбора основания логарифма в (4.11) мы приходим к понятию «информационная энтропия», которую будем измерять в битах.
Многие авторы информационную энтропию отождествляют с термодинамической, что на самом деле соответствует физической реальности. В нашем случае пользоваться для измерения информационного напряжения битами можно только при условии, если использовать двоичные логарифмы, как предлагается в работе . Однако не следует информационное напряжение путать с информацией, которая тоже измеряется в битах, это существенно важно.
Для убедительности сказанного рассмотрим пример. Подсчитаем информационное напряжение, которым обладает система охраны компьютерной техники в лабораториях ИЦ МФ. Пусть важнейшим объектом является информационный сервер МФ, на котором хранится вся информация, и при его разрушении или ликвидации нарушается весь учебный процесс факультета. Предположим, что операцию ликвидации сервера проводят два человека, один из которых при срабатывании сигнализации успел сбежать. В этом случае, не имея возможности задержать обоих похитителей, охранники, не владеющие оперативной связью между собой, захватят одного из похитителей с вероятностью
равной 0,5 (Р0 = 0,5). Если же действия охраны согласованы между собой, то они нейтрализуют этого субъекта с возможной вероятностью, равной 1. Тогда имеем, что АН = log2 = 1 бит. Согласно определению логарифма, получим показательное уравнение вида 2х = 1, принимая х = 0, напряжение источника информации (охраны) составит 1 бит.
Следует указать, что согласно рассмотренному примеру, источник с напряжением 1 бит способен передать сколь угодно большое количество информации объекту управления в зависимости от времени, которым он будет располагать. Также важно отметить, что информационное напряжение источника может изменять во времени свое значение, т. е. знак, если важность достижения цели неодинакова в различные моменты времени. Используя математические выражения, описывающие работу автоматических систем управления , для определения переменного информационного напряжения можно воспользоваться формулой
2
ґр Л
уст
V P0)
1 t
IJ
T
dt = o(AH),
log
(4.12)
AH д =
1 ¦ J dt =
которая выражает среднеквадратическое напряжение o(AH). Для случайных изменений сути сигнала х можно воспользоваться выражением
? ? AH0 = Jf (x)AH ¦ dx; A^ = Jf (x)AH2 ¦ dx,
-оо
-оо
где АН0 и АНД - средние и действующие значения сущности сигнала; f(x) - плотность распределения вероятности Р события.
Если AH = A sin
v T)
, то согласно (4.12) действующее значение переменно-
A
го информационного напряжения составляет AH д = -=, что в 1,5 раза меньше
V2
максимального мгновенного значения напряжения.
Эта информация, выданная источником управления, т. е. управляющим, поступает к исполнительным органам («активным элементам») информационной нагрузкой источника, а затем по цепи обратной связи возвращается снова в источник. Обратную связь обеспечивают те же элементы, что и прямую.
Если исполнительные органы являются пассивными и не обладают памятью, они характеризуются только информационным сопротивлением (IR). Следует отметить, что IR - это время (t), т. е. время исполнения управляющего ука-зания.
Более точно IR системы равно времени (tR) исполнения задания от момента получения указания до поступления доклада о его выполнении. При этом время
(tR) для принятия самого решения, т. е. осмысления формулировки, является
внутренним информационным сопротивлением (R В нр) источника информации
(управляющего), которое является обратным пропускной способности системы (Imax) источника информации. И, следовательно, для систем без памяти имеет место информационный закон, аналогичный закону Ома для электрической цепи
ii = (4.13)
FH
где FH = Fn - Бвт - информационное сопротивление нагрузки; Бп и F^ - информационное сопротивление соответственно всей цепи и внутреннее сопротивление источника; I - информационный поток (ток) в цепи нагрузки.
При однократном достижении цели сквозь систему управления проходит информация (1ц), численно равная напряжению источника информации
I, = IFh = DH = DI упР. (4.14)
При длительной работе в течение времени (t) через данную цепь протекает информация
t t DH
1 УПР = J Idt = J-dt. (415)
0 0 Гн
Важно понимать, что эффективность управления зависит не от количества информации и даже не от качества, а насколько она способствует достижению цели, т. е. от ее ценности. Таким образом, ценность информации в первую очередь необходимо связывать с целью, с точностью формулировки задачи. Под качеством информации мы будем понимать степень ее искажения, которая зависит от элементов информационной цепи.
Таким образом, мы можем иметь большой поток информации, но если она не способствует достижению цели и не является точной, например, из-за искажения, поэтому и не будет иметь ценности.
На основании данной методики расчета количества информации, циркулирующей в информационной цепи, появляется также возможность выполнения оценок качества принимаемых решений, что позволяет использовать классические математические процедуры оценивания для решения задач оптимизации.
Подобные задачи рассматриваются в работе .
Известно, что любая задача становится более конкретной, когда она выражена в математической форме. Чтобы поставить математическую задачу, отражающую сущность производства информационных работ, следует к необходимым условиям, изложенным выше, прибавить достаточные, а именно:
уметь пользоваться методикой информационной оценки в сложившейся ситуации;
иметь управляющего, способного нейтрализовать дестабилизирующие факторы, влияющие на данную вероятностную систему.
В работе показано, как вероятностные динамические задачи представляются в виде детерминированных, в рамках которой исследуемые объекты описываются функциями многих переменных, а варьируемые параметры являться их аргументами. Таким образом, принимая ИЦ за вероятностную динамическую систему, его модель можно представить в виде функций многих переменных х = х(х1, ..., хт), где х = f(I); I - информация.
В задачах, не требующих точного решения, можно воспользоваться приближенной оценкой состояния объекта, принимая при этом во внимание только наиболее важный выходной показатель, например, пропускную способность f(x), т. е. эффективность. Тогда, обозначая остальные параметры через функцию ф8(х), s = 1, 2, ..., m, мы приходим к задаче оптимального выбора вектора параметров х. Эта задача представляет собой вычислительный алгоритм, записываемый в виде процедуры оценивания и оптимизации:
max f (x),
(4.16)
>
xeS
S{x: x є X с Rn, js(x) Нам требуется максимизировать показатель качества f(x) на множестве S, заданной системой ограничений, которые сформулированы выше. Здесь элемент х принадлежит множеству S, если хєХ, где Х - некоторое подмножество n-мерного пространства Rn, при выполнении неравенства ф3(х) Обычно множество Х определяет ограничения на допустимые значения варьируемых параметров х типа условий неотрицательности xj>0 или принадлежности интервалу xj А неравенства ф3(х) Существенно важно, что с математической точки зрения сформулированную задачу можно также трактовать как процесс планирования в условиях неопределенности для динамической системы. Тогда она сводится к решению вероятностной задачи линейного программирования, которая с учетом (4.16) записывается в более удобной форме:
max MюCj(w)y L
w
(4.17)
j=1
S^x: xє X,P\ ?asj(w)xj Ls,S = 1,2,...,m.
sJw j s J=!
где Mw - операция усреднения случайной величины w, а Y есть функция f(xj), характеризующая важнейший показатель анализируемой системы, например, пропускную способность комплекса или его эффективность. Оператор усреднения в общем виде записывается в виде
Mw{y(x,w)}=Y(x),
который определяет функцию Y(x) как математическое ожидание случайного вектора y(x,w). Функция Y(x), заданная случайными величинами js(x,w), является вероятностной.
В формулах (4.16) и (4.17) функции f(x) и ф3(х) были заданы алгоритмически, а не аналитически, поэтому мы оперируем случайными величинами, которые математически обозначаются в виде f(x, w) и js(x, w), так что в более строгой форме имеем
f(y)= Mw{f(y,w)},
js(x)= Mw{js(x,w)}. (4.18)
Следует указать, что Y - детерминированная величина, а q(w) является коэффициентом целевой функции.
Условия аВсе случайные параметры, входящие в (4.17), позволяют учесть колебания (отклонения) затрат (z) на выпуск продукции (y) c учетом несвоевременной поставки комплектующих изделий, ЗИПа, программно-технического обеспечения и прочих случайных факторов, в условиях которых функционирует система (вычислительный комплекс).
Чтобы удовлетворить условия задач (4.16) и (4.17), необходимо подобрать
n
вектор х так, чтобы случайное неравенство вида 2 asj(w) ? bs(w) выполнялось
j=1
с вероятностью, равной Ls, и тогда задачу (4.17) можно представить в более простом виде
f(y, w) = 2 Cj(w)y,
j=1
(4.19)
js (x, w) = Ls - 1
j=1
где Ls(w) характеризует совокупность случайных факторов, например, зависящих от поставщиков и потребителей.
Таким образом, рассматриваемая задача относится к разряду вероятностных, потому что условия, в которых существует и функционирует комплекс,
являются неопределенными и зависимыми от многих непредвиденных обстоятельств, не известных непосредственному руководству.
Сформулированная и поставленная задача позволяет связать все важнейшие параметры в систему и учесть случайные факторы, которые в реальной практике существуют всегда.
Данная постановка задачи позволяет отвлечься от содержательной формулировки и перейти к построению математической модели управления, используя теорию автоматического регулирования .
Чтобы практически решить эту задачу управления с заданным качеством выпускаемой продукции, в нее необходимо ввести процедуры принятия оперативного решения, которые должны быть легко адаптированы в целевую функцию. При этом параметры x;=f(I), т. е. выполнение плана x;, можно заменить на количество переработанной информации (I), используя информационные цепи.
Так как решение общей математической задачи управления в рамках данной работы не представляется возможным из-за ее сложности, поэтому мы ее будем представлять в виде отдельных простейших подзадач.
Такая процедура упрощения сложной задачи на практике достигается за счет предварительного согласования отдельных подзадач с непосредственными лицами высшего звена управления, в компетенцию которых относится их решение. Тем самым мы приводим многофакторную задачу к одношаговой, детерминированной. Но, с другой стороны, т. к. в одношаговых задачах принятия решения определяется не величина и характер управляющего воздействия (Н), а непосредственное значение переменной состояния 0 объекта, которое обеспечивает достижение стоящей перед ИК цели, поэтому управляющего высшего уровня не интересует, каким способом будет решена данная задача. Ему важен конечный результат. Следовательно, для конкретного руководителя нижнего уровня задача принятия решения будет считаться заданной, если в нее включены все необходимые параметры, дающие возможность произвести оценку состояния объекта на данный момент времени (t). Тогда в данном конкретном случае задача принятия решения для него будет считаться детерминированной при условии, если определены пространство состояния природы 0 с распределением вероятностей ^(u) для всех ue 0, пространство решений х и критерий качества принятого решения. Взаимосвязь между этими параметрами будем называть целевой функцией (Fq).
Целевую функцию F4, выражающую в явном виде цель, можно рассматривать как одну из важнейших выходных величин объекта управления и обозначим ее через (g). Тогда целевая функция является скалярной величиной, зависящей от состояния природы u и от состояния объекта управления 0. В этом случае сформулированную задачу в математической форме можно представить в виде
g = 0(x, u).
Это и есть математическая модель одношаговой детерминированной задачи принятия решения. Она представляет собой тройку взаимосвязанных параметров, которые можно записать в виде следующей зависимости:
G=(x, 0, q), (4.20)
где q - скалярная функция, определяемая на прямом произведении множеств (ХХ0), тогда G=f(g).
*
Решение этой задачи состоит в нахождении такого х є Х, которое обращает в максимум функцию g, т. е. удовлетворяет условию
X = {x є X: Q(x,u) = max}. (4.21)
Здесь Х=х1, х2, ..., хт - перечень плановых мероприятий ИЦ, при m?N, где N - переменные величины - число плановых мероприятий(задач). Существует несколько методов решения одношаговой задачи.
Представляя переменную Х как количество переработанной информации I в процессе производства вычислительных работ, мы можем записать, что х=Щ), и воспользоваться информационным способом оценки принятия решения. Поэтому при необходимости имеем право произвести оценку деятельности информационного центра в битах.
Опираясь на системные принципы, мы пытались формализовать рутинную работу руководителя информационного подразделения и перевести на научную основу, представив ее в виде задачи управления, с целью повышения оперативности принятия решения в неопределенных условиях.

Особенности применения математической теории при принятии управленческих решений

Замечание 1

Методы, которые основы на использовании средств математики, позволяют принимать управленческие решения , поддающиеся формализации или полному описанию взаимосвязи и взаимозависимости их условий, факторов и результатов.

Использование математической теории характерно для принятия тактических и частично оперативных решений.

Применение математической теории эффективно при наличии ряда параметров управленческого решения:

  • заранее четко известна цель или критерий оптимизации;
  • очевидны главные ограничения - условия достижения данной цели;
  • управленческая проблема хорошо структурирована.

Алгоритм математической теории

Особенность математической теории обоснования управленческих решений заключается в наличие в ней определенного алгоритма, который точно предписывает выполнять некую систему операций в установленной последовательности для решения определенного класса задач.

Алгоритм математической теории принятия управленческих решений должен соответствовать ряду требований:

  • определенность, т.е. точность и однозначность, не оставляющие места для произвола;
  • массовость и универсальность - применимость для решения конкретного класса задач, когда первоначальные данные варьируются в известных границах;
  • результативность, т.е. возможность решения установленной задачи за ограниченное число операции.

Математические методы принятия управленческих решений

Основными методами решения типовых управленческих задач в рамках математической теории являются:

  1. Метод математического анализа используется при расчетах для обоснования потребностей в ресурсах, учете себестоимости, разработки проектов и т. д.
  2. Метод математической статистики удобно использовать, когда изменение исследуемых показателей является случайным процессом.
  3. Эконометрический метод предполагает использование экономической модели - схематического представления экономического процесса или явления.
  4. Линейное программирование - решение системы уравнений, когда имеется строго функциональная зависимость между исследуемыми явлениями.
  5. Динамическое программирование используется для решения оптимизационных задач, где ограничения или целевая функция имеют нелинейную зависимость.
  6. Теория очередей используется для поиска оптимального количества каналов обслуживания при заданном уровне потребности в них. Примером такой ситуации является выбор оптимального варианта организации работы с клиентами, чтобы время обслуживания было минимально, а качество – высоко без дополнительных затрат.
  7. Метод исследования операций - использование математических вероятностных моделей, которые представляют исследуемый процесс, вид деятельности или систему. Оптимизация сводится к сравнительному исследованию числовых оценок тех параметров, которые нельзя оценить обычными методами.
  8. Ситуационный анализ – это комплексная технология принятия и реализации управленческого решения, которая основана на проведении анализа отдельной управленческой ситуации. Такой анализ отталкивается от конкретной ситуации, проблемы, возникающей в деятельности организации, которая требует принятия управленческого решения.
  9. Методы теории игр - моделирование ситуации, в которой при обосновании решений необходимо учитывать конфликт или несовпадение интересов различных лиц.
  10. Точки безубыточности - метод, в котором общие доходы уравниваются с суммарными расходами для поиска точки, приносящей предприятию минимальную прибыль.
  11. Проецирование тренда - анализ временных рядов, основанный на допущении, что произошедшее в прошлом дает хорошее приближение в случае оценке будущего. Этот метод используется для выявления тенденций прошлого и их продления на будущее.

© 2024 sun-breeze.ru
Новые идеи бизнеса - Животные и растения. Заработок в интернете. Автобизнес