Технология изготовления пластин для печати. Сравнительный анализ формных материалов и технологий изготовления печатных форм для запечатывания издания-образца

Министерство образования Российской Федерации

Московский государственный университет печати

Специальность - Технология полиграфического производства

Форма обучения - заочная


КУРСОВОЙ ПРОЕКТ

по дисциплине «Технология формных процессов»

тема проекта «Разработка технологии изготовления

печатных форм плоской офсетной печати по схеме компьютер-печатная форма на светочувствительных пластинах»


Студент Молчанова Ж.М.

Курс 4 группа ЗТпп 4-1 шифр пз004


Москва 2014г.


Ключевые слова: формная пластина, печатная форма, экспонирование, экспонирующее устройство, рекордер, лазер, проявляющий раствор, полимеризация, абляция, линиатура, градационная характеристика.

Текст реферата: в данном курсовом проекте осуществляется выбор технологии CtP для изготовления офсетных печатных форм для проектируемого издания. Использование CtP-технологии позволяет значительно упростить производственный процесс, снизить время изготовления комплекта печатных форм, значительно сократить количество оборудования и расход материалов.



Введение

Технические характеристика и показатели оформления издания

Возможный вариант технологической схемы изготовления издания

Общие сведения о формах плоской офсетной печати

2 Разновидности форм плоской офсетной печати

4 Классификация формных пластин для технологии Computer - to - Plate

Выбор проектируемого технологического формного процесса

Выбор используемого формного оборудования и контрольно-измерительной аппаратуры

Выбор основных материалов формного процесса

Карта проектируемого формного процесса

Заключение

Список литературы


Введение


Для выбора технологии изготовления печатных форм основной отправной точкой являются характеристики изданий выпускаемые данной типографией. Я буду рассматривать, типографию, выпускающую журнальную продукцию.

В последнее время в полиграфическое производство активно внедряется новая технология, получившая название компьютер-печатная форма (СТР-технология). Главной ее чертой является получение готовых печатных форм без промежуточных операций. Дизайнер, закончив верстку, с компьютера направляет изображение на выводное устройство, в качестве которого могут быть принтер, фотонаборный аппарат или специализированное устройство, и сразу получает печатную форму.

Технология Computer-to-Plate известна полиграфистам около 30 лет, но активно развиваться начала только в последние годы, в связи с развитием программного обеспечения, созданием новых формных материалов на которых возможна прямая лазерная запись.

офсетный печать пластина


1. Технические характеристики выбранного издания


Для выбора технологии изготовления печатных форм основной отправной точкой являются характеристики издания, готовящегося к печати. В данной курсовой работе рассматривается разработка технологии изготовления печатных форм для издания со следующими характеристиками:


Таблица 1 Характеристика проектируемого издания

Наименование показателяИздание, принятое к проектированиюВид изданияФормат издания Формат издания после обрезки (мм)Формат полос (кв.)9 1/3 × 13 1/4Объем издания в печатно-учетных листах бумажных листах страницахТиражтыс. экз.Красочность составных элементов издания тетрадей обложки 4+4 4+4Характер внутритекстовых изображенийрастровые (линиатура растра 62 лин/см) четырех красочныеПлощадь внутриполосных иллюстраций в процентах ко всему объему60%Кегль основного текста12 пГарнитура основного текстаPalladiumСпособ печатиплоский офсетныйВид используемой бумаги для печатимелованнаяТип печатных красок для печатиевропейская триадаКоличество тетрадей5Количество страниц в одной тетради16Способ фальцовкивзаимно перпендикулярнаяСпособ комплектовки блоковподборкаТип обложкицельная, скрепленная с блоком клеевым бесшвейным способом

2. Возможный вариант технологической схемы изготовления издания


3. Общие сведения о формах плоской офсетной печати


1 Основные понятия о плоской офсетной печати


Плоская офсетная печать - наиболее широко распространенный и прогрессивный способ печати. Это вид плоской печати, при котором краска с печатной формы переносится сначала на эластичный промежуточный носитель - резинотканевое полотно, а затем на запечатываемый материал.

Формы плоской офсетной печати отличаются от форм высокой и глубокой печати по двум основным признакам:

  1. отсутствует геометрическая разница в высоте между печатающими и пробельными элементами
  2. есть принципиальное различие физико-химических свойств поверхности печатающих и пробельных элементов

Печатающие элементы формы плоской офсетной печати обладают ярко выраженными гидрофобными свойствами. Пробельные элементы, наоборот, хорошо смачиваются водой и способны удерживать на своей поверхности некоторое ее количество, они обладают ярко выраженными гидрофильными свойствами.

В процессе плоской офсетной печати проводится последовательное смачивание печатной формы водно-спиртовым раствором и краской. При этом вода удерживается на пробельных элементах формы вследствие их гидрофильности, образуя на их поверхности тонкую пленку. Краска удерживается только на печатающих элементах формы, которые она хорошо смачивает. Поэтому принято говорить, что процесс плоской офсетной печати основан на избирательном смачивании пробельных и печатающих элементов водой и краской.


3.2 Разновидности форм плоской офсетной печати


Для получения форм плоской офсетной печати необходимо создать на поверхности формного материала устойчивые гидрофобные печатающие и гидрофильные пробельные элементы. Чтобы на печатной форме достичь эффекта отталкивания краски, используют два метода, основанных на различном взаимодействии поверхности печатной формы и краски:

·в традиционном офсете печатная форма увлажняется увлажняющим раствором. Раствор очень тонким слоем с помощью валиков наносится на форму. Участки формы, не несущие изображения, гидрофильны, т.е. воспринимают воду, а участки, несущие краску, олеофильны (воспринимают краску). Пленка увлажняющего раствора препятствует передаче краски на пробельные участки формы;

·в сухом офсете поверхность формного материала краскоотталкивающая, что обуславливается нанесением силиконового слоя. Путем специального целенаправленного его удаления (толщина слоя около 2 мкм) открывается поверхность печатной формы, воспринимающая краску. Этот способ называют офсетом без увлажнения, а также часто «сухим офсетом».

Доля «сухого» офсета не превышает 5%, что объясняется в основном следующими причинами:

-более высокая стоимость формных пластин;

-пониженная липкость и вязкость красок предъявляет более высокие требования к качеству бумаги, поскольку при печати не происходит нанесения на офсетную резину увлажняющего раствора. Она быстро загрязняется из-за скопления бумажной пыли и выщипывания волокон. В результате снижается качество печати, а машину приходится останавливать на обслуживание;

-более жесткие требования к стабильности температурного режима в процессе печати;

-низкая тиражестойкость и устойчивость к механическим повреждениям.

В настоящее время наиболее широкое распространение получили печатные формы для плоской офсетной печати с увлажнением пробельных элементов. У них, как и у форм без увлажнения есть свои недостатки и достоинства. Рассмотрим основные и наиболее важные из них:

Основные недостатки ОСУ:

-сложность поддержания баланса краска-вода;

-невозможность получения строго одинакового размера растровых точек при печати тиража, что увеличивает количество потерь материалов и времени;

-низкие экологические показатели.

Основные достоинства ОСУ:

-наличие большого количества расходных материалов для изготовления форм этого типа и оборудования для печати с них;

-процесс печати не требует поддержания строго определенных климатических условий (например, температуры), а также чистоты подготовки печатной машины;

-более низкая стоимость расходных материалов.

Печатные формы для офсетной печати представляют собой тонкие (до 0,3 мм), хорошо натягивающиеся на формный цилиндр, преимущественно монометаллические или, реже, полиметаллические пластины. Используются также формы на полимерной или бумажной основе. Среди материалов для печатных форм на металлической основе значительное распространение получил алюминий (по сравнению с цинком и сталью).

Офсетные печатные формы на бумажной основе выдерживают тиражи до 5000 экземпляров, однако из-за пластической деформации увлажненной бумажной основы в зоне контакта формного и офсетного цилиндров штриховые элементы и растровые точки сюжета сильно искажаются, поэтому бумажные формы могут быть использованы только для продукции однокрасочной печати невысокого качества. Формы на полимерной основе имеют максимальную тиражестойкость до 20000 экземпляров. К недостаткам металлических форм можно отнести их дорогостоимость.

Из анализа достоинств и недостатков рассматриваемых форм можно сделать вывод, что монометаллические формы с увлажнением пробельных элементов являются подходящим типом форм для печати тиража выбранного в данной работе издания.


3 Общие сведения о технологии Computer - to - Plate


Tехнология Computer - to - Plate - это способ изготовления печатных форм, при котором изображение на форме создается тем или иным способом на основе цифровых данных, полученных непосредственно из компьютера. При этом полностью отсутствуют какие-либо промежуточные вещественные полуфабрикаты: фотоформы, репродуцируемые оригиналы-макеты и т.д.

Существуют различные варианты CtP-технологий. Многие из них уже прочно закрепились в технологическом процессе российских и зарубежных полиграфических предприятиях, не представляя конкуренцию классической технологии, а лишь являясь одним из вариантов технологии изготовления печатных форм при определенных тиражах и требованиях к качеству продукции.

Устройства «Компьютер - печатная форма» производят регистрацию изображения на формную пластину посредством поэлементной записи. Формные пластины с изображением далее проявляют традиционным способом. Затем для печати тиража их устанавливают в листовых или рулонных печатных машинах.

В устройство записи подаются формные пластины, находящиеся в светозащитных кассетах. Формная пластина крепится на барабане и производится ее запись лазерным лучом. Далее экспонированная пластина через транспортер, подается из экспонирующего в проявочное устройство. Система полностью автоматизирована.

Основные преимущества CtP технологий:

-существенное сокращение длительности процесса изготовления печатных форм (из-за отсутствия процесса изготовления фотоформ)

-высокие показатели качества готовых печатных форм благодаря снижению уровня искажений, которые возникают при изготовлении фотоформ

-сокращение количества оборудования

-меньше потребность в персонале

-экономия фотографических материалов и обрабатывающих растворов

-экологичность процесса.


3.4 Классификация формных пластин для технологии Computer - to - Plate


Схема 3.1. Классификация технологии CtP по типу применяемых формных материалов

Схема 3.2. Классификация способов изготовления офсетных печатных форм по технологии CtP


4. Выбор разрабатываемого технологического формного процесса


Изготовление печатных форм на основе цифровых данных, получаемых непосредственно из компьютера, может осуществляться как в автономном режиме (экспонирующем устройстве для технологии CtP), так и непосредственно в печатной машине. Однозначно сказать, что качество печатных форм, полученных в автономном режиме, ниже по сравнению с полученными в печатной машине, нельзя. Определяющим фактором является подбор и выбор формного материала и оборудования. По длительности и энергоемкости процесса, уровню механизации и автоматизации, расходу формного материала и обрабатывающих растворов технология изготовления печатных форм в автономном режиме уступает технологии изготовления форм в печатной машине. Однако технология изготовления печатных форм в печатной машине очень дорога и зачастую может быть неоправданной при изготовлении той или иной продукции, поскольку не предусматривает использование разного формного материала. Поэтому для проектируемого издания печатные формы будем изготавливать в автономном экспонирующем устройстве в следующей последовательности: поэлементная запись информации (экспонирование), предварительный нагрев, проявление, промывание, гуммирование и сушка (обоснование см. раздел 6).


5. Выбор используемого формного оборудования и контрольно-измерительной аппаратуры


При выборе формного оборудования необходимо уделять внимание не только на такие характеристики, как формат, потребляемая мощность, габариты, степень автоматизации и т.д., но и принципиальному строению экспонирующей системы (барабанная, планшетная), которое определяет технологические возможности оборудования (разрешение, размеры лазерного пятна, повторяемость, производительность), а также сложности в сервисном обслуживании и срок службы.

В системах CtP, ориентированных на изготовление офсетных печатных форм, применяют лазерные экспонирующие устройства - рекордеры - трех основных типов:

üбарабанные, выполненные по технологии «внешний барабан», когда форма расположена на наружной поверхности вращающегося цилиндра;

üбарабанные, выполненные по технологии «внутренний барабан», когда форма расположена на внутренней поверхности неподвижного цилиндра;

üпланшетные, когда форма расположена в горизонтальной плоскости неподвижно или совершает движение в направлении, перпендикулярном направлению записи изображения.

Для планшетных рекордеров характерна невысокая скорость записи, низкая точность записи, невозможность экспонирования больших форматов. Эти свойства для барабанных рекордеров, как правило, не свойственны. Но внутрибарабанный, и внешнебарабанный принципы построения устройств также имеют свои недостатки и достоинства.

В системах с позиционированием пластины на внутренней поверхности цилиндра устанавливаются 1 -2 источника излучения. Во время экспонирования пластина неподвижна. Основные достоинства таких устройств: простота крепления пластины; достаточность одного источника излучения, благодаря чему достигается высокая точность записи; механическая стабильность системы вследствие отсутствия больших динамических нагрузок; простота фокусировки и отсутствие необходимости юстировки лазерных лучей; простота замены источников излучения и возможность плавного изменения разрешения записи; большая оптическая глубина резкости; простота установки перфорирующего устройства для штифтовой приводки форм.

Главные недостатки - большое расстояние от источника излучения до пластины, что повышает вероятность возникновения помех, а также простои систем с одним лазером в случае его выхода из строя.

Внешнебарабанные устройства имеют такие достоинства, как: невысокая частота вращения барабана благодаря наличию многочисленных лазерных диодов; долговечность лазерных диодов; невысокая стоимость запасных источников излучения; возможность экспонирования больших форматов.

К их недостаткам относят: использование значительного числа лазерных диодов; необходимость трудоемкой юстировки; невысокую глубину резкости; сложность установки устройств для перфорирования форм; во время экспонирования барабан вращается, что приводит к необходимости использовать системы автоматической балансировки и усложняет конструкции крепления пластины.

Компании, производящие устройства с внешним и с внутренним барабанами, отмечают, что при одинаковом формате и примерно равной производительности первые дороже вторых на 20-30% (различия в цене высокопроизводительных систем, вследствие высокой стоимости многолучевых экспонирующих головок для внешнебарабанных устройств, могут быть еще больше).

Размер пятна лазерного луча и возможность его варьирования - существенный показатель в выборе оборудования. Также важной характеристикой является многофункциональность оборудования, т.е. возможность экспонирования различных формных материалов.

Согласно вышеприведенным рассуждениям и табл. 2 целесообразно использовать следующее оборудование: Escher-Grad Cobalt 8 - устройство с внутренним барабаном, подходит по формату продукции, имеет достаточно высокое разрешение, используемый лазер - фиолетовый лазерный диод 410 нм, минимальный размер пятна - 6 мкм. Качество изображения достигается использованием системы перемещения каретки микронной точности, высокочастотной электроники и 60-милливатного фиолетового лазера с системой термоконтроля.

Для контроля файлов, идущих на вывод, используется программа FlightCheck 3.79. Это программа для проверки наличия и соответствия требованиям PrePress файлов, составляющих файл верстки, наличия шрифтов, используемых в файле верстки, а также для сбора и подготовки всех необходимых файлов на вывод. Для контроля изготовления офсетных печатных форм по технологии CtP необходимо использовать денситометр для измерений в отраженном свете и имеющий функцию измерения печатных форм (например, ICPlate II фирмы GretagMacbeth) и многофункциональный тест-объект - шкалу Ugra/Fogra Digital Plate Control Wedge for CtP.

Для всех вышеприведенных экспонирующих устройств возможная толщина экспонируемого формного материала составляет 0,15-0,4 мм.

К оборудованию Escher-Grad Cobalt 8 для фотополимерных пластин рекомендуется процессор для проявки пластин Glunz&Jensen Interplater 135HD Polymer.


Таблица 2 Сравнительная характеристика формного оборудования

Виды возможного оборудованияконструкцияиспользуемый лазерразмер пятна лазераразрешение, dpiмакс. формат пластин, ммпроизводительность, форм/чэкспонируемые формные пластиныPolaris 100 + Pre-loader производитель AgfaплоскостнойFD-YAG 532 нм10 мкм1000-2540914х650120 формата 570х360 мм при 1016 dpi Agfa N90A, N91, Lithostar UltraGalileo S производитель Agfaвнутр. барабанND-YAG 532 нм10 мкм1200-36001130х82017 полного формата при 2400 dpiAgfa N90A, N91, Lithostar UltraPanther Fastrack производитель Prepress SolutionsплоскостнойAr 488 нм FD-YAG 532 нмПеременный от 14 мкм1016-2540625х91463 формата 500х700 мм при 1016 dpiAgfa Lithostar, N91; FujiCTP 075x производитель Krauseвнешн. барабанND-YAG 532 н10 мкм1270-3810625х76020 при 1270 dpiвсе фотополимерные или серебросодержащие пластины Agfa, Mitsubishi; фотопленки Fuji, Polaroid, KPG; материалы MatchprintEscher-Grad Cobalt 8внутр. барабанфиолетовый лазерный диод 410 нм6 мкм1000-36001050х810105 при 1000 dpiЧувствительные к фиолетовому излучению серебросодержащие и фотополимерные пластиныXpos 80e производитель Luscherвнутр. барабан830 нм 32 диода10 мкм2400800х65010все термопластины

Таблица 3 Характеристики процессора &Jensen Interplater 135HD Polymer

Скорость40-150 см/минШирина пластины, max1350 ммТолщина пластины0,15-0,4 ммТемпература предварительного нагрева70-140°СТемпература сушки30-55°СТемпература проявителя20-40°С, рекомендуется охлаждающее устройствоВходит в комплектСекции предварительного нагрева и промывки, полное погружение пластины, фильтр проявителя, автоматическая система пополнения растворов, щетки, циркуляция в секциях промывки и дополнительной промывки, автоматическая секция гуммирующей секции, охлаждающее устройство

6. Выбор основных материалов формного процесса


Таблица 4 Сравнительная характеристика основных типов формных пластин для технологии CtP

Принцип построения слояДлина волны экспонирующего излучения (нм)Градационная характеристика и воспроизводимая линиатура растраТиражестойкость без обжига (тыс.экз.)Вид обработкиПреимуществаНедостаткиДиффузия комплексов серебра488-5412-98 % 80 лин/см250проявление, промывание, фиксирование, гуммированиехорошее разрешение; могут экспонироваться дешевыми аргоновыми лазерами низкой мощности; используют для обработки стандартную химию; могут экспонироваться как традиционным, так и цифровым способаминедостаточная износостойкость на больших тиражах; тенденция к удорожанию формных пластин из-за применения серебра; дорогостоящее проявление, регенерация и утилизация химических растворов; необходимость работы при красном неактиничном излученииГибридная технология488-6702-99 %150проявление/ фиксирование для серебряного слоя; УФ-засветка через маску; проявление, промывание; гуммирование пластинымогут экспонироваться почти всеми используемыми в полиграфической промышленности лазерами; могут экспонироваться как традиционным, так и цифровым способамииз-за двойного экспонирования возникают потери в разрешающей способности; требуется громоздкая и дорогая проявочная машина, способная контролировать два отдельных химических процесса; необходимость работы при красном неактиничном излученииСветочувствительный фотополимеризующийся488-5412-98 % 70 лин/см100-250предварительный нагрев, проявление, промывание, гуммированиев зависимости от используемого покрытия формной пластины могут обрабатываться в обычном стандартном водном растворетребуется предварительный обжиг до начала обработки; в зависимости от спектральной чувствительности может возникнуть необходимость работы при красном неактиничном излученииТермоабляционная технология780-12002-98 % 80 лин/см100-1000без обработки (лишь отсос продуктов сгорания)позволяют работать на свету и не требуют специального светонепроницаемого записывающего оборудования; позволяют получить резкую растровую точку; не требуют обработки в химических растворахиспользование дорогостоящего мощного лазераТехнология трехмерного структурирования830, 10641-99 % 80 лин/см250-1000предварительный нагрев, проявление, промывание, гуммированиепозволяют работать на свету и не требуют специального светонепроницаемого записывающего оборудования; формные пластины нельзя переэкспонировать, поскольку могут иметь только два состояния (проэкспонированы, либо нет); позволяют получить более резкую растровую точку и, соответственно, более высокую линиатурупока еще требуется предварительный обжиг до начала обработки


Из таблицы 4 можно сделать следующие выводы: почти все термочувствительные формные пластины (независимо от того какую технологию они реализуют) обладают максимально возможными на сегодняшний день параметрами, которые впоследствии определяют технологический процесс и качество печатной продукции. К ним относятся: репродукционно-графические показатели (градационная характеристика, разрешающая и выделяющая способность) и печатно-технические (тиражестойкость, восприятие печатной краски, стойкость к растворителям печатных красок, молекулярно-поверхностные свойства). Термочувствительные пластины более приемлемы по отношению к пользователю, чем их светочувствительные аналоги. Они позволяют работать в обычных производственных условиях, не требуют безопасного освещения, термочувствительные покрытия практически не нуждаются в защитных пленках, имеют высокую, устойчивую тиражестойкость и другие печатно-технические свойства.

С другой стороны, поскольку энергетическая чувствительность этих пластин значительно ниже, чем у светочувствительных, для изготовления форм на термочувствительных пластинах требуется не только повышение мощности ИК-лазера при экспонировании, но и, как правило, необходим подвод больших количеств механической и химической энергии на стадиях дополнительной обработки при проявлении или очистке готовых форм.

Однако определяющим фактором, ограничивающим их широкое использование, является высокая стоимость. Поэтому их целесообразно использовать для высокохудожественной многокрасочной продукции.

В нашем случае, т.к. серебросодержащие формные материалы и растворы для их обработки имеют тенденцию к удорожанию, а также вследствие ряда экологических и технологических причин (высокая трудоемкость, низкая производительность и т.д. см. табл. 4) используем негативный светочувствительный фотополимер Ozasol N91V фирмы Agfa. Его характеристики: сенсибилизирован к излучению фиолетового лазерного диода с длиной волны 400-410 нм; толщина материала 0,15-0,40 мм; окраска слоя красная, светочувствительность 120 мкДж/см2; разрешающая способность пластин N91V зависит от типа используемого экспонирующего устройства и обеспечивает воспроизведение растра с линиатурой до 180-200 лин/см; охват растровых градаций от 3-97 до 1-99%; тиражестойкость достигает 400 тыс. экз.

На рис.5.1 показано принципиальное строение выбранного материала.


Рис.5.1. Схема строения светочувствительных фотополимерных пластин: 1 - защитный слой; 2 - фотополимеризующийся слой; 3 - оксидная пленка;4 - алюминиевая основа


Основные достоинства фотополимерной технологии - скорость изготовления печатной формы и ее высокая тиражестойкость, что очень важно как для газетных предприятий, так и для типографий, имеющих большую загрузку малотиражной продукцией. Кроме того, при правильном хранении эти формы можно использовать повторно.

Выбранный формный материал может экспонироваться на выбранном ранее устройстве CtP - Escher-Grad Cobalt 8, т.к. он может поставляться любым форматом. Это позволяет печатать издание на печатных машинах с максимальным форматом бумаги 720х1020 мм. Печать можно произвести на листовых четырехсекционных офсетных машинах двусторонней печати, например, SpeedMaster SM 102.

Толщина фотополимеризующегося слоя пластины N91V невелика, что дает возможность провести экспонирование в одну стадию. В процессе экспонирования формируются печатающие элементы формы. Под действием лазерного излучения происходит послойная фотополимерзация композиции по радикальному механизму, и образуется нерастворимая трехмерная структура, пространственная сшивка которой заканчивается при последующей термообработке при температуре 110 - 120 °С. Дополнительный нагрев пластины ИК-лампами позволяет также снизить внутренние напряжения в печатающих элементах и повысить их адгезию к подложке перед проявлением. После термообработки пластина проходит предварительную промывку, во время которой удаляется защитный слой, что позволяет избежать загрязнения проявителя и ускорить процесс проявления. В результате проявления неэкспонированные участки исходного покрытия растворяются, и пробельные элементы формируются на алюминиевой подложке. Готовые формы промывают, гуммируют и сушат.


7. Карта проектируемого формного процесса


Таблица 5 Карта формного процесса

Наименование операцииНазначение операцииПрименяемое оборудование, приспособления, приборы и инструментыПрименяемые материалы и рабочие растворыРежимы выполнения операцииВходной контроль файлов, предназначенных на вывод, и формных пластинопределение пригодности их к использованию в соответствии с технологическими инструкциями по процессам офсетной печатиПрограмма FlightCheck 3.79, линейка, толщиномер, лупаформные пластины-Подготовка оборудованиявключение оборудования, проверка наличия растворов для обработки в емкостях, установка требуемых режимовEscher-Grad Cobalt 8; проявочный процессор Glunz&Jensen Interplater 135HD Polymerпроявляющие растворы Ozasol EP 371 replenisher, MX 1710-2; дистиллированная вода; гуммирующие растворы Spectrum Gum 6060, HX-148-Экспонирование Предварительный нагрев проявление промывание гуммирование сушкаперенос информации файла на формную пластину (образование сшитой трехмерной структуры) обеспечение требуемой тиражестойкости (повышение устойчивости печ. элементов) удаление незаполимеризованного слоя удаление остатков проявляющего раствора защита от грязи, окисления и повреждения удаление излишков влагиEscher-Grad Cobalt 8; проявочный процессор Glunz&Jensen Interplater 135HD Polymer Проявочный процессор Glunz&Jensen Interplater 135HD Polymer см. п. предварительный нагрев см. п. предварительный нагрев см. п. предварительный нагрев см. п. предварительный нагревпластины Ozasol N91; - проявляющие растворы Ozasol EP 371 replenisher, MX 1710-2; дистиллированная вода гуммирующие растворы Spectrum Gum 6060, HX-148T=3 мин t=70-140°C скорость прохождения копии 40-150 см/мин - - t=30-55°CКонтроль печатной формыопределение их пригодности к использованию в соответствии с технологическими инструкциями по процессам офсетной печатиденситометр ICPlate II фирмы GretagMacbeth, лупа--


Спуск полос первой и второй тетрадей («оборот - чужая форма»)


I сторона

II сторона

Заключение


Надо сказать, что никто не покупает, как правило, просто оборудование - покупают решение. И это решение должно отвечать определенным поставленным задачам. Это может быть, например, снижение производственных затрат, повышение качества продукции, увеличение производительности и т.д. При этом, естественно, должна учитываться специфика конкретной типографии - тиражность, требуемое качество, используемые краски и т.д. На другой чаше весов находится цена этого решения.

Теоретически нет сомнений, что за CtP будущее. Развитие любой технологии, и печать не исключение, неизбежно ведет к ее автоматизации, минимизации ручного труда. В перспективе любая технология стремится к сокращению производственного цикла до одной ступени. Однако до тех пор, пока технология печати не достигла такого уровня развития, потенциальным потребителям приходится взвешивать множество за и против.


Используемая литература


1. Карташова О.А. Основы технологии формных процессов. Лекции, прочитанные для студентов. ФПТ. 2004.

Амангельдыев А. Прямое экспонирование формных пластин: говорим одно, подразумеваем другое, делаем третье. Журн. «Курсив», 1998. №5(13). С. 8 - 15.

Битюрина Т., Филин В. Формные материалы для CTP - технологии. Журн. «Полиграфия», 1999. №1. С. 32 -35.

Самарин Ю.Н., Сапошников Н.П., Синяк М.А. Печатные системы фирмы Heidelberg. Допечатное оборудование. М: МГУП, 2000. С. 128-146.

Погорелый В. Современные системы CTP. Журн. «КомпьюПринт», 2000. №5. С. 18 - 29.

Группа компаний Легион. Каталог допечатного полиграфического оборудования: осень 2004 - зима 2005.

7. Энциклопедия по печатным средствам информации. Г.Киппхан. МГУП, 2003.

8. Процессы офсетной печати. Технологические инструкции. М: Книга, 1982. С.154-166.

Полянский Н.Н. Методическое пособие по оформлению курсовых проектов и выпускных работ. М: МГУП, 2000.

Полянский Н.Н., Карташова О.А., Бушева Е.В., Надирова Е.Б. Технология формных процессов. Лабораторные работы. Ч.1. М: МГУП, 2004.

Гудилин Д. «Часто задаваемые вопросы о CtP». Журн. «КомпьюАрт», 2004, №9. С. 35-39.

Жарова А. «Пластины CTP - опыт в освоении технологий». Журн. Полиграфия, 2004. №2. С. 58-59.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Технологии изготовления форм офсетной печати

Юрий Самарин, докт. техн. наук, проф. МГУП им. Ивана Федорова

В современных допечатных процессах для изготовления офсетных печатных форм в основном используются три технологии: «компьютер — фотоформа» (Computer-to-Film); «компьютер — печатная форма» (Computer-to-Plate) и «компьютер — печатная машина» (Computer-to-Press).

Процесс изготовления офсетных печатных форм с использованием технологии «компьютер — фотоформа» (рис. 1) включает следующие операции:

  • пробивка отверстий для штифтовой приводки на фотоформе и формной пластине с помощью перфоратора;
  • форматная запись изображения на формную пластину путем экспонирования фотоформы на контактно-копировальной установке;
  • обработка (проявление, промывка, нанесение защитного покрытия, сушка) экспонированных формных копий в процессоре или поточной линии для обработки офсетных формных пластин;
  • контроль качества и техническая корректура (при необходимости) печатных форм на столе или конвейере для просмотра форм и их корректировки;
  • дополнительная обработка (промывка, нанесение защитного слоя, сушка) форм в процессоре;
  • термообработка форм в печи для обжига (при необходимости повышения тиражестойкости).

Рис. 1. Схема процесса изготовления офсетных форм по технологии «компьютер — фотоформа»

Качество фотоформ должно отвечать требованиям технологического процесса изготовления печатных форм. Эти требования определяются способом печати, применяемой технологией и материалами. Например, комплект цветоделенных растровых диапозитивных фотоформ для офсетной листовой печати на многокрасочной машине (печать по сырому) на наиболее распространенной сегодня мелованной бумаге должен обладать следующими характеристиками:

  • отсутствие царапин, заломов, посторонних включений и других механических повреждений;
  • минимальная оптическая плотность (оптическая плотность основы пленки с учетом плотности вуали) — не более 0,1 D;
  • максимальная оптическая плотность для фотоформ, изготовленных лазерным экспонированием (с учетом плотности вуали), — не менее 3,6 D;
  • плотность ядра растровой точки не менее 2,5 D;
  • минимальная величина относительной площади растровых элементов — не более 3%;
  • наличие на фотоформе названий красок;
  • углы наклона растровой структуры соответствуют заданным величинам для каждой краски;
  • линиатура растровой структуры соответствует заданной;
  • несовмещение изображений на фотоформах одного комплекта по крестам — не выше 0,02% от длины диагонали. Это значение учитывает допуски на повторяемость при лазерном экспонировании и величину деформации пленки;
  • наличие на фотоформе контрольных меток и шкал.

Фотоформа полноформатного печатного листа может быть получена как непосредственно при выводе изображения в фотовыводном устройстве соответствующего формата, так и методом монтажа из фотоформ отдельных полос. В этом случае монтаж осуществляется вручную на монтажном столе.

Формы офсетной плоской печати на пробельных и печатающих элементах обладают различными физико-химическими свойствами по отношению к печатной краске и увлажняющему средству. Пробельные элементы образуют гидрофильные поверхности, воспринимающие влагу, а печатающие элементы — гидрофобные участки, воспринимающие печатную краску. Гидрофильные и гидрофобные участки создаются в процессе обработки формного материала.

Формы офсетной плоской печати могут быть разделены на две основные группы: монометаллические и полиметаллические — в зависимости от того, что применяется для создания пробельных и печатающих элементов — один металл (монометалл) или несколько (полиметалл). В настоящее время полиметаллические формы практически не используются. При всех современных способах изготовления монометаллических форм гидрофобные печатающие элементы создаются на пленках копировального слоя, прочно сцепленных с развитой поверхностью металла, а пробельные — на адсорбционных гидрофильных пленках, образованных на поверхности металла-основы.

Рис. 2. Способы контактного копирования: а — позитивный; б — негативный. 1 — подложка; 2 — копировальный слой; 3 — фотоформа диапозитивная; 4 — фотоформа негативная

Офсетные печатные формы изготавливают негативным или позитивным способом контактного копирования (рис. 2). При негативном способе на светочувствительный копировальный слой копируют негативы, и в этом случае задубленный копировальный слой служит основанием для печатающих элементов. При позитивном способе на светочувствительный слой копируют с диапозитива, и тогда экспонированные участки растворяются при обработке копии.

Позитивный способ копирования обеспечивает большую точность передачи элементов изображения и устойчивость печатающих элементов в процессе печатания.

Для изготовления офсетных форм применяются централизованно выпускаемые предварительно очувствленные офсетные позитивные или негативные пластины.

Предварительно очувствленные позитивные формные пластины представляют собой многослойную структуру (рис. 3). Они производятся на основе особо чистого алюминиевого проката и являются результатом сложного и продолжительного процесса, гарантирующего высокое качество продукта. Эти пластины предназначены для изготовления высококачественных офсетных форм для листовых и рулонных машин способом позитивного копирования.

Рис. 3. Структура позитивной офсетной пластины: 1 — алюминиевая основа; 2 — электрохимическое зернение; 3 — оксидная пленка; 4 — гидрофильный подслой; 5 — светочувствительный копировальный слой; 6 — микропигментированный слой

После электрохимической обработки, оксидирования и анодизации алюминиевая основа приобретает физико-химические характеристики, обеспечивающие высокую разрешающую способность и тиражестойкость, стабильность гидрофильных свойств пробельных элементов на офсетной печатной форме, равномерное распределение красочного слоя и увлажняющего раствора по всей площади пластины.

После экспонирования обеспечивается хорошее представление цвета копировального слоя, позволяющее контролировать качество копирования до проявления. Печатающие элементы, образованные копировальным слоем, имеют хороший контраст по сравнению с пробельными участками, что позволяет использовать пластины для сканирования в системах автоматического контроля и управления офсетной печатью. В процессе печатания благодаря развитой капиллярной структуре анодированного слоя быстро устанавливается оптимальный баланс «краска — вода», который стабильно поддерживается в процессе печатания тиража. Копировальный печатающий слой характеризуется высокой устойчивостью к действию спиртовых увлажняющих растворов и смывочных материалов. Оксидный слой упрочняет пробельные участки и увеличивает тиражестойкость печатных форм, защищая их поверхности от царапин и истирания. Высококачественная алюминиевая основа обеспечивает плотное облегание формного цилиндра и прочность формы на излом.

Высокая светочувствительность и фотоширота копировального слоя позволяют сократить время экспонирования, обеспечить точное воспроизведение и упростить процесс проявления.

Микропигментирование (вакуумное покрытие) копировального слоя способствует плотному контакту с фотоформой при экспонировании и быстрому созданию вакуума.

Основные технические показатели позитивных (аналоговых) формных пластин имеют примерно следующие значения:

  • шероховатость — 0,4-0,8 мкм;
  • толщина анодированного слоя — 0,8-1,7 мкм;
  • толщина копировального слоя — 1,9-2,3 мкм;
  • спектральная чувствительность — 320-450 нм;
  • энергочувствительность — 180-240 мДж/см2;
  • время экспонирования (при освещенности 10 000 лк) — 2-3 мин;
  • минимальный размер воспроизводимых штрихов — 6-8 мкм;
  • линиатура растрового изображения — 60 лин/см (150 lpi);
  • градационная передача растровых элементов — в светах 1-2%, в тенях 98-99%;
  • тиражестойкость — до 150 тыс. оттисков без термообработки и до 1 млн оттисков с термообработкой;
  • цвет копировального слоя — синий, зеленый, темно-голубой;
  • толщина пластин — 0,15; 0,2; 0,3; 0,4 мм.

Печатные формы должны иметь на передней кромке штифтовые отверстия разной конфигурации (круглые, овальные, прямоугольные). Штифтовые (приводочные) отверстия облегчают совмещение изображений, получаемых при печатании с готовых печатных форм.

Фотоформы и формные пластины перед копированием приводочными отверстиями надеваются на штифты специальной линейки, поставляемой вместе с перфоратором. Конфигурация, количество отверстий и расстояние между ними (рис. 4) зависят от формата печати и принятого стандарта приводки, который должен соответствовать штифтовой линейке печатной машины. Готовая форма надевается в печатной машине на соответствующие штифты.

Рис. 4. Печатная форма со штифтовыми отверстиями: L — формат поля изображения; S — передняя кромка формы; D — расстояние между пазами

Для пробивки штифтовых отверстий в фотоформах и формных пластинах применяют специальные устройства — перфораторы с ручным или педальным приводом.

Перед началом экспонирования необходимо тщательно подготовить стекло копировальной рамы — очистить его от загрязнений и пыли с помощью специальных средств.

Пластину помещают в копировальную раму и размещают на ней монтаж фотоформ эмульсионным слоем к копировальному слою пластины. Совмещение пластины и монтажа осуществляется с помощью штифтов, расположенных на специальной линейке. Изображение на пластине должно быть читаемым.

При отсутствии системы штифтовой приводки копировщик отмеряет линейкой с двух сторон заданный размер клапана (расстояние от обрезных меток монтажа до края пластины) и закрепляет монтаж с помощью липкой ленты.

За обрезным полем изображения устанавливаются шкалы контроля копировального процесса СПШ-К, РШ-Ф или контрольная шкала Ugra-82.

Для экспонирования необходимо обеспечить полный контакт между монтажом диапозитивов и поверхностью пластины, который достигается за счет двухступенчатого набора вакуума в контактно-копировальной установке.

Режим экспонирования зависит от типа пластины, мощности осветителя (освещенность стекла копировальной рамы должна быть не менее 10 тыс. лк), расстояния от осветителя до стекла копировальной рамы, характера диапозитивов и определяется опытным путем.

Правильность выбора времени экспонирования оценивают по воспроизведению на копии сенситометрической шкалы после ее проявления на форме: для пробной печати должны быть полностью проявлены 3-4 поля шкалы СПШ-К (оптическая плотность 0,45-0,6), для тиражной печати — 4-5 полей (оптическая плотность 0,6-0,75).

С целью сокращения объема корректуры для устранения постороннего изображения (штрихов от краев пленки на монтаже, следов липкой ленты) проводят дополнительное экспонирование с рассеивающей (матированной) пленкой. Время экспонирования с рассеивающей пленкой обычно составляет 1/3 от основного времени экспонирования.

При этом следует иметь в виду, что использование рассеивающей пленки не влияет на воспроизведение мелких растровых точек и штриховых элементов, если они имеют высокую оптическую плотность и контраст. Для высокохудожественных изданий во избежание дефекта непрокопировки следует исключить применение рассеивающей пленки при экспонировании.

Для проявления экспонированную пластину устанавливают на стол загрузки процессора и подают ее на транспортирующие валики. Дальнейшее продвижение пластины происходит автоматически.

В зависимости от типа процессора проявление осуществляется струями раствора, подаваемого на копию из бака секции проявления, или путем погружения копии в кювету с проявляющим раствором с одновременным механическим воздействием ворсистого валика.

Офсетная копия проявляется в соответствии с возможностями процессора при температуре 21-25 °С в течение 20-35 с. Для каждого типа пластин их производители дают рекомендации по составу и расходу проявителя, которые необходимо соблюдать.

Для проявления вручную используются те же проявляющие растворы. Процесс осуществляется при температуре 21-27 °С. При небольшом количестве изображения на форме время проявления составляет 45-60 с. При среднем и большом количестве печатающих элементов рекомендуется сначала проявить пластину в течение 30-40 с, проконтролировать и в случае необходимости продолжить проявление еще 30-40 с. Проявление копии рекомендуется проводить с помощью мягкого тампона. При этом недопустимо попадание абразивных частиц осадка и неразбавленного концентрата проявителя на поверхность пластины.

Скорость движения офсетной копии зависит от типа процессора, времени работы проявителя и его температуры.

Температуру раствора в секции задают на пульте установки режимов в соответствии с техническими параметрами процессора. Необходимо строго соблюдать температурный режим проявляющего раствора. При температуре ниже рекомендуемой возможно неполное удаление копировального слоя с пробельных участков, которое при печатании приведет к эффекту «тенения» формы. Температура выше рекомендуемой делает проявитель более агрессивным, что может привести к повреждению печатающих элементов и снижению тиражестойкости печатных форм.

Проявляющий раствор по мере его истощения необходимо корректировать свежими порциями с последующей полной заменой. В современных процессорах предусмотрена система постоянной подпитки проявителя. Для этого предусмотрена емкость с регенератом, откуда свежие порции проявителя-регенерата подаются в секцию проявления после прохождения каждой формы.

Промывка осуществляется струйным способом автоматически в секции промывки. Избыток воды на форме отжимается валиками на выходе из секции.

Нанесение защитного покрытия (гуммирование) на форму осуществляется валковым способом автоматически с последующим отжимом на выходе из секции. Валики для нанесения защитного покрытия необходимо тщательно промывать водой перед началом работы.

Сушка осуществляется обдувом формы с помощью вентиляторов воздухом, подогретым до 40-60 °С при прохождении через секцию сушки. Для контроля качества готовую форму переносят на стол для корректуры и тщательно просматривают. Пробельные элементы формы должны быть полностью проявлены. Все дефекты пробельных элементов: следы от приклеивающего материала, тень от краев диапозитива, излишние метки и кресты и т.п. — удаляют с помощью корректирующего карандаша «минус» или тонкой кисти, смоченной гелем для корректуры. Корректуру проводят по защитному покрытию. В корректирующем составе копировальный слой полностью растворяется, поэтому наносить его следует очень аккуратно, не затрагивая изображения. Время действия корректуры до визуального растворения слоя — 5-10 с.

Дефекты печатающих элементов: пробелы на плашках, отсутствие части рисунка и т.п. — исправляют с помощью корректирующего карандаша «плюс»: на отсутствующие элементы наносят тонкий слой лака и проводят локальное нагревание для его закрепления.

Откорректированную форму подвергают дополнительной обработке, для чего ее вводят в секцию промывки процессора, затем снова наносят защитное покрытие и производят сушку. Форма готова!

Термообработку проводят в специальных установках — печах для обжига, состоящих из стола загрузки, термошкафа и стола выгрузки.

Формы, предназначенные для термообработки, обязательно покрывают слоем коллоида с целью защиты пробельных элементов от обезвоживания, а печатающих элементов — от растрескивания.

Защитное покрытие наносят на чистые формы, предварительно удалив с них гуммирующий слой, — вручную на столе или в процессоре. В последнем случае коллоид заливают в секцию нанесения защитного покрытия. Форму устанавливают на стол загрузки и подают на транспортирующие ролики. Дальнейшее продвижение осуществляется автоматически.

Температуру и время термообработки задают на пульте установки режимов: температура 180-240 °С, время 3-5 мин. После термообработки проводят визуальный контроль формы: изображение становится темным, насыщенным и имеет одинаковый цвет по всему формату. Слой коллоида может служить защитным покрытием при хранении форм не более суток. Для длительного хранения форм его удаляют с поверхности теплой водой с помощью губки и наносят обычное защитное покрытие.

Формы перекладывают листами чистой бумаги и хранят в горизонтальном положении на стеллажах в помещении с неактиничным освещением, вдали от отопительных приборов.

Рис. 5. Схема процесса изготовления офсетных форм по технологии «компьютер — печатная форма»

Процесс изготовления офсетных печатных форм с использованием технологии «компьютер — печатная форма» (рис. 5) включает следующие операции:

  • передача цифрового файла, содержащего данные о цветоделенных изображениях полноформатного печатного листа в растровый процессор (РИП);
  • автоматическая загрузка формной пластины в формовыводное устройство;
  • обработка цифрового файла в РИП (прием, интерпретация данных, растрирование изображения с данной линиатурой и типом растра);
  • поэлементная запись цветоделенных изображений полноформатных печатных листов на формной пластине путем ее экспонирования в формовыводном устройстве;
  • обработка формной копии (проявление, промывка, нанесение защитного слоя, сушка, включая, при необходимости для некоторых типов пластин, предварительный подогрев копии) в процессоре для обработки офсетных формных пластин;
  • контроль качества и техническая корректура (при необходимости) печатных форм на столе или конвейере для просмотра форм;
  • дополнительная обработка (промывка, нанесение защитного слоя, сушка) откорректированных печатных форм в процессоре;
  • термообработка (при необходимости повышения тиражестойкости) форм в печи для обжига;
  • пробивка штифтовых (приводочных) отверстий с помощью перфоратора (в случае отсутствия встроенного перфоратора в формовыводном устройстве).

Для изготовления офсетных печатных форм по технологии «компьютер — печатная форма» используются светочувствительные (фотополимерные и серебросодержащие) и термочувствительные формные пластины (цифровые), в том числе не нуждающиеся в химической обработке после экспонирования.

Пластины на основе фотополимерного слоя чувствительны к излучению видимой части спектра. В настоящее время распространены пластины для зеленого (532 нм) и фиолетового (410 нм) лазеров. Структура пластин такова (рис. 6): на стандартную анодированную и зерненую алюминиевую основу нанесен слой мономера, защищенный от окисления и полимеризации специальной пленкой, которая при дальнейшей обработке растворяется водой. Под воздействием света заданной длины волны в слое мономера образуются центры полимеризации, затем пластина подвергается прогреву, в ходе которого процесс полимеризации ускоряется. Полученное скрытое изображение протравливается проявителем, при этом вымывается неполимеризованный мономер, а полимеризованные печатающие элементы остаются на пластине. Фотополимерные офсетные пластины предназначены для экспонирования в формовыводных устройствах с лазером видимого света — зеленым или фиолетовым.

Благодаря высокой скорости экспонирования и простоте обработки эти пластины широко применяются и обеспечивают возможность получения 2-98%-ной растровой точки при линиатуре до 200 lpi. Если их не подвергать дополнительной термообработке, пластины выдерживают до 150-300 тыс. оттисков. После обжига — более миллиона оттисков. Энергочувствительность фотополимерных пластин составляет от 30 до 100 мкДж/см2. Все операции с пластинами необходимо проводить при желтом свете.

Пластины на основе серебросодержащей эмульсии также чувствительны к излучению видимой части спектра. Существуют пластины для красного (650 нм), зеленого (532 нм) и фиолетового (410 нм) лазеров. Принцип образования печатающих элементов сходен с фотографическим — разница заключается в том, что на фотографии кристаллы серебра, на которые попал свет, остаются в эмульсии, а остальное серебро вымывается фиксажем, тогда как на пластинах серебро с незасвеченных участков переходит на алюминиевую подложку и становится печатающими элементами, а эмульсия вместе с оставшимся в ней серебром полностью смывается.

В последние годы всё более широкое применение находят пластины, светочувствительные к фиолетовой области спектра излучения (400-430 нм). В связи с этим многие формовыводные устройства оснащаются фиолетовым лазером. В процессе экспонирования этих пластин (рис. 7) луч фиолетового лазера активирует серебросодержащие частицы на пробельных элементах. Незасвеченные участки после обработки проявителем формируют печатающие элементы.

В процессе проявления серебросодержащие частицы активируются, при этом у них возникают устойчивые связи с желатиной. Частицы, которые не были засвечены, остаются подвижными и способными к диффузии.

На следующей стадии не подвергшиеся засветке ионы серебра диффундируют из эмульсионного слоя через барьерный слой на поверхность алюминиевой основы, формируя на нем печатающие элементы.

После того как изображение полностью сформировано, желатиновая фракция эмульсии и растворимый в воде барьерный слой полностью удаляются во время смывки, оставляя на алюминиевой основе только печатающие элементы в виде осажденного серебра.

Эти пластины обеспечивают получение 2-98%-ной точки при 250 lpi, их тиражестойкость составляет 200-350 тыс. оттисков, а светочувствительность максимальна. Энергочувствительность пластин находится в интервале от 1,4 до 3 мкДж/см.

Благодаря высокой чувствительности для экспонирования пластины требуется меньше времени и энергии. Это, в свою очередь, приводит как к повышению производительности формовыводного устройства, так и к снижению потребляемой лазером мощности и к продлению срока его службы. В результате использования тонкого серебряного слоя, который более чем на порядок тоньше полимерного, уменьшается растискивание краски, что ведет к повышению качества оттиска. Все операции с пластинами необходимо проводить при желтом свете. Пластины на основе серебросодержащей эмульсии не рекомендуется применять для печатания УФ-красками, а также подвергать обжигу.

Термочувствительные пластины имеют следующую структуру: на алюминиевую основу нанесен слой полимерного материала (термополимер). Под воздействием ИК-излучения покрытие разрушается либо меняет свои физико-химические свойства, в результате при последующей химической обработке образуются пробельные (в случае позитивного материала) или печатающие (при негативном процессе) элементы. Для экспонирования таких пластин используют лазер с длиной волны излучения 830 или 1064 нм.

Рис. 8. Технологический процесс записи и обработки термопластин: 1 — эмульсионный слой (термополимер); 2 — алюминиевая подложка; 3 — луч лазера; 4 — экспонированный термополимер; 5 — нагревательный элемент; 6 — печатающие элементы формы; 7 — проявляющий раствор; 8 — печатная краска

Разрешающая способность термочувствительных пластин может обеспечить запись изображения с линиатурой до 330 lpi, что соответствует получению однопроцентной точки размером 4,8 мкм. При этом тиражестойкость полученных печатных форм достигает 250 тыс. оттисков без обжига и 1 млн оттисков с обжигом. Процесс обработки этих пластин после экспонирования состоит из трех ступеней (рис. 8):

  • предварительный обжиг — поверхность формы подвергается обжигу примерно в течение 30 с при температуре 130-145 °С. Этот процесс укрепляет печатающие (чтобы они не смогли раствориться в проявителе) и размягчает пробельные элементы. Предварительный обжиг является обязательной операцией;
  • проявление — стандартный позитивный проявочный процесс: погружение в раствор, обработка щетками, промывка, гуммирование и форсированная воздушная сушка;
  • обжиг — после обработки пластина подвергается обжигу в течение 2,5 мин при температуре от 200 до 220 °С, чтобы обеспечить ее прочность и большую тиражестойкость.

В настоящее время на российском рынке представлен широкий ассортимент термочувствительных пластин, в том числе и пластин нового поколения, которые не требуют предварительного нагрева для обработки. Эти пластины в большинстве своем обеспечивают получение 1-99%-ной точки при линиатуре растра 200 lpi, тиражестойкость 150 тыс. оттисков без обжига, а светочувствительность у них различается, находясь в интервале от 110 до 200 мДж/см2.

Для химической обработки экспонированных пластин рекомендуется применять реактивы того же производителя, предназначенные для материалов данного типа. Это позволяет гарантированно достичь высоких технических характеристик, потенциально заложенных в современном формном материале.

Формные пластины, не нуждающиеся в химической обработке после экспонирования, называют беспроцессными. В настоящее время разработано два вида формных материалов, не нуждающихся в химической обработке: с термически удаляемыми слоями (термоабляционные) и со слоями, изменяющими фазовое состояние.

Термоабляционные пластины являются многослойными, а пробельные элементы в них формируются на поверхности специального гидрофильного или олеофобного слоя. В процессе экспонирования происходит избирательное термическое удаление ИК-излучением (830 нм) специального слоя. Существуют позитивные и негативные версии термоабляционных пластин. В негативных пластинах олеофобный слой находится выше олеофильного печатающего слоя, и в процессе экспонирования происходит его абляция с будущих печатающих элементов формы. В позитивных пластинах все наоборот: выше находится олеофильный печатающий слой, удаляемый в процессе экспонирования с будущих пробельных элементов формы. Продукты горения удаляются системой вытяжки, которой должно быть оснащено формовыводное устройство, а после экспонирования пластина промывается водой.

Основой термоабляционных формных материалов служат алюминиевые пластины или полиэфирные пленки.

К недостаткам беспроцессных пластин можно отнести более высокую цену и низкую тиражестойкость (около 100 тыс. оттисков).

В оперативной полиграфии при производстве малотиражной продукции, не требующей высокого качества (инструкции, бланки и т. п.), находят применение офсетные печатные формы на бумажной и полимерной основе.

Офсетные печатные формы на бумажной основе выдерживают тиражи до 5 тыс. экземпляров, однако из-за пластической деформации увлажненной бумажной основы в зоне контакта формного и офсетного цилиндров штриховые элементы и растровые точки сюжета искажаются, поэтому бумажные формы могут быть использованы только для однокрасочной печати.

Технология изготовления бумажных офсетных форм основана на принципах электрофотографии, заключающихся в применении фотополупроводящей поверхности для образования скрытого электростатического изображения, которое впоследствии проявляется.

В качестве формного материала используется специальная бумажная подложка с нанесенным на нее фотопроводниковым покрытием (оксид цинка). Формный материал в зависимости от типа обрабатывающего устройства может быть листовой и рулонный.

Достоинствами этой технологии являются оперативность изготовления печатной формы (менее минуты), простота использования и низкая расходная стоимость. Такие печатные формы могут быть получены путем прямой записи текстовой и изобразительной информации в обычном лазерном электрофотографическом принтере. При этом никакой дополнительной обработки форм не требуется.

Формы на полимерной основе, например полиэстровой, имеют максимальную тиражестойкость до 20 тыс. оттисков хорошего качества с линиатурой до 175 lpi и градационным диапазоном 3-97%.

Основой технологии является полиэстровый рулонный светочувствительный материал, работающий по принципу внутреннего диффузионного переноса серебра. В процессе экспонирования происходит засветка галогенида серебра. При химической обработке осуществляется диффузионный перенос серебра из незасвеченных областей в верхний слой, восприимчивый к краске. Этот технологический процесс требует негативного экспонирования. Экспонирование полиэстровых материалов может осуществляться на некоторых типах фотовыводных устройств.

Рис. 9. Схема процесса получения офсетных печатных форм по технологии «компьютер — печатная машина»

Процесс получения офсетных печатных форм по технологии «компьютер — печатная машина» включает следующие операции (рис. 9):

  • передача цифрового файла, содержащего данные о цветоделенных изображениях полноформатного печатного листа, в растровый процессор изображения (РИП);
  • обработка цифрового файла в РИП (прием, интерпретация данных, растрирование изображения с заданной линиатурой и типом растра);
  • поэлементная запись на формном материале, размещенном на формном цилиндре цифровой печатной машины, изображения полноформатного печатного листа;
  • печатание тиражных оттисков.

Одной из таких технологий, реализованных в цифровых печатных машинах офсетной печати без увлажнения, является обработка тонкого покрытия. В этих машинах используется рулонный формный материал, на полиэстровую основу которого нанесены теплопоглощающий и силиконовый слои. Поверхность силиконового слоя отталкивает краску и образует пробельные элементы, а удаленный лазерным излучением термопоглощающий слой — печатающие элементы.

Другой технологией получения форм офсетной печати непосредственно в цифровой печатной машине является передача на поверхность формы термополимерного материала, находящегося на передающей ленте, под действием инфракрасного лазерного излучения.

Изготовление офсетных печатных форм непосредственно на формном цилиндре печатной машины сокращает продолжительность формного процесса и повышает качество печатных форм за счет уменьшения числа технологических операций.

В этом разделе курсовой я рассмотрю плюсы и минусы способа печати, который я выбрала для проектирования моего издания-образа, а именно достоинства и недостатки офсетного способа печати.

Современное состояние и тенденции развития техники и технологии полиграфического производства характеризуются все более опережающим ростом удельного веса офсетного способа по сравнению с другими видами печати. Офсетная печать приобретает все большее значение при печатании самых различных изданий. Развитие офсетного способа печати во многом обусловлено достижениями современных формных процессов. Высокое качество и другие специфические требования, предъявляемые к печатным формам, требуют применения специальных формных материалов и тщательной, высокоточной их обработки.

Основные достоинства офсетной печати, по сравнению с другими способами, таковы:

1. Экономичное изготовление небольших, средних и больших тиражей с высоким качеством, причем на самых различных сортах бумаги.

2. Надежное, быстрое и относительно недорогое изготовление печатных форм как обычными, так и цифровыми способами.

3. Высокая степень стандартизации и автоматизации всего производственного процесса.

Недостатки офсетной печати:

1. При офсетной печати требуется допечатная обработка (цветоделение, цветопроба, создание форм, печать форм, подготовка пресса, цветобалансировка), что делает дороже печать маленьких тиражей и невозможность выполнения срочных заказов (например, за час).

2. Персонификация данных и нумерация при офсетной печати невозможна.

По прогнозам Исследовательской информационной ассоциации полиграфистов Великобритании PIRA (Printing Information Research Association), в 2010 году рыночная доля офсетной печати среди других ее способов составит 40%, что превышает доли других основных способов печати. Что касается качества печати, то здесь конкурентом офсета может быть только глубокая печать с ее огромными тиражами. Уровень качества для средних и больших тиражей почти полностью принадлежит офсетной печати. Область малых тиражей при высоком качестве продукции занимает цифровая печать (впрочем, и сюда активно внедряется офсетная печать), а область больших, а лучше сказать, сверхбольших тиражей при высоком уровне качества - глубокая печать.

Исходя из этой информации, полученной мной из Интернета, я для своего издания выбрала офсетный способ печати, он мне показался наиболее лучшим, как по качеству печати, так и по экономическим соображениям.

Выбор и обоснование основных технологических решений

В данной части я буду рассматривать фотоформы, материалы для них, а так же выбор и обоснование выбора фотовыводного и формного оборудования.

Таблица 4 - Выбор и обоснование выбора технологических процессов

Возможные

варианты процессов

Выбранный вариант

Обоснование выбора

Вывод фотоформы

1. технология прямого вывода печатных форм - "цифровая" или CTP late

2. традиционный промежуточный вывод фотоформ,

традиционный промежуточный вывод фотоформ.

Я выбрала этот способ так как устройства CTP существуют сравнительно недавно, и, в настоящее время ещё не достигли той стадии развития, когда можно было бы говорить о полном отмирании двухсоставного процесса. Сегодня CTP-процесс не имеет сколько-нибудь существенных преимуществ по качеству получаемых оттисков перед фотопроцессом, а в некоторых случаях, даже уступает ему. Кроме того, CTP-устройства очень сложны, и степень их надёжности в целом пока ниже, чем у фотовыводных устройств. Есть и ещё один важный фактор, сдерживающий распространение CTP. На сегодняшний день, в силу высокой стоимости расходных материалов, использование этого метода экономически оправдано только в некоторых типах полиграфических производств, прежде всего, в многотиражной (журнальной) печати. При печати же меньших тиражей и при сравнительно небольшом общем объёме производства применение CTP пока не является в полной степени экономически оправданным, а тираж моего издания всего 3000 экземпляров, поэтому, на мой взгляд, для воспроизведения моего издания СТР экономически не выгодно.

Способы изготовления печатной формы

1. Электрографический способ. Печатную форму электрографическим способом можно сделать в течение 5 мин. При этом следует учитывать, что данным способом изготавливают формы только со штриховых оригиналов: с полутоновых оригиналов изготовить качественную печатную форму нельзя. Печатные формы в основном изготавливают на электрографических аппаратах плоскостного типа (ЭРА-М, ЭГП2-РМ2).

2. Фотомеханический способ. Фотомеханический способ изготовления офсетных печатных форм характеризуется нанесением формную пластину светочувствительного слоя (называемого еще копировальным), контактным копированием на этот слой негатива или диапозитива с последующей обработкой для выявления и формирования в слое печатных и пробельных элементов формы. В зависимости от способа копирования (негативный или диапозитивный) печатные элементы создаются либо на самом задубленном слое коллоида, либо на лаковой пленке, специально нанесенной на формную пластину для образования печатных элементов. Фотомеханический способ изготовления форм рекомендуется при выпуске изданий, к которым предъявляются повышенные требования к качеству полиграфического исполнения, с тоновыми и цветными иллюстрациями и сложной графикой.

Фотомеханический способ изготовления печатной формы.

Я выбрала этот способ так как он рекомендуется при выпуске изданий, к которым предъявляются повышенные требования к качеству полиграфического исполнения, с тоновыми и цветными иллюстрациями и сложной графикой. Я считаю, что издание которое я проектирую относится к таким.

Таблица 5 - Технологические характеристики основных и вспомогательных материалов формного процесса

Материалы

Технологические характеристики и показатели качества

Выбранный вариант

Обоснование выбора

Фототехнические плёнки

1. прозрачная

2. матовая4

Единственным отличием матовой пленки является наличие в ее структуре дополнительного защитного слоя, содержащего матирующие частицы размером до 7 микрон. Матирующий слой имеет свойство рассеивать свет, поэтому результаты экспонирования прозрачной и матовой пленок будут немного отличаться друг от друга. Внешний вид матовой пленки во многом определяется количеством использованных матирующих добавок и размером использованных частиц

2. прозрачная фототехническая плёнка

Поскольку и та и другая плёнки практически ничем в плане качества не отличаются, я выбрала прозрачную плёнку так как она мне больше нравится.

Копировальный слой

1. растворы яичного альбумина или

поливиниловый спирт

2. светочувствительные ортонафтохинондиазидные слои (ОНХД).

3. диазосоединениях

При использовании копировального слоя на основе хромированного коллоида яичного альбумина рекомендуется применять следующий состав: альбумин яичный (сухой) - 45 г, аммоний двухромовокислый - 14 г, аммиак (25%) - 6 мл, вода-1000мл. Альбумин растворяют в 200 мл холодной воды, после чего к нему добавляют, перемешивая, еще 500 мл воды. Через некоторое время раствор альбумина взбивают, дают отстояться и фильтруют через марлю, сложенную вчетверо. Отдельно в 300 мл горячей воды растворяют двухромовокислый аммоний и дают ему остыть. Остывший раствор вливают в раствор альбумина и фильтруют. После этого добавляют аммиак, при этом окраска раствора из оранжевой становится светло-желтой.

Копировальные слои на основе ОНХД работают позитивно, то есть воздействие лучистой энергии приводит к увеличению растворимости экспонированных участков слоя. ОНХД даже относительно сложного строения не образуют полимерной пленки, поэтому их вводят в полимер или химически сшивают с макромолекулами полимера. Широкое применение ОНХД в составе копировальных слоев объясняется их достоинствами: отсутствием темнового дубления, достаточной светочувствительности, устойчивости к агрессивным воздействиям, разрешающей способности, хорошей адгезии к металлам.

Более широко используются копировальные слои на диазосоединениях, в которых под действием света происходит фотохимический распад в освещенных местах и слой удаляется с этих участков пластины при проявлении.

2. светочувствительные ортонафтохинондиазидные слои (ОНХД).

Я выбрала этот материал, поскольку копировальный слой на основе ОНХД лучше стыкуется с алюминиевыми пластинами.

проявление

Щелочные растворы, разбавленные водой

промывка

проявляют в воде. При проявлении незадубившиеся участки копировального слоя растворяются в воде и удаляются с формы вместе с краской. На форме остаются задубленные участки, прочно удерживающие краску, которые образуют печатные элементы.

гидрофиилизующий раствор

После проявления форму обрабатывают гидрофилизующим растворам, для придания ей устойчивых гидрофильных свойств. Его состав: кислота ортофосфорная (уд. вес 1,7) - 15 мл. раствор декстрина-400 мл. вода-до 1000 мл. В раствор декстрина добавляют ортофосфорную кислоту. Изготовленный раствор тщательно перемешивают.

1. термическое закрепление

2. химическое закрепление

1. с помощью инфракрасных ламп КИ - 220/1000. При термическом закреплении происходит оплавление частиц проявляющего порошка, и они хорошо закрепляются на печатной форме, образуя печатные элементы.

Процессы после закрепления изображения, завершающие формный этап.

После закрепления изображения форму покрывают гидрофилизующим раствором следующего состава: кислота ортофосфорная (уд. вес 1,7) - 150-200 мл, раствор декстрина - 400 мл, вода - до 1000 мл. Затем форму промывают водой, покрывают декстрином, сушат и передают в печать.

формные материалы

1. зерненная алюминиевая фольга

2. бумажные пластины с гидрофильным покрытием

И то и другое применяется в качестве формного материала.

Если используют гидрофильные пластины, то при переносе изображения сверху пластины накладывают лист алюминиевой фольги.

Оксид алюминия, который при особой обработке основы представляет собой тонкий слой, образует стабильную гидрофильную поверхность.

При строгом соблюдении технологии формы, изготовленные на алюминиевой фольге, обладают тиражеуетойчивостью не менее 10 тыс. оттисков, а используя гидрофильные пластины - не менее 1-2 тыс. оттисков.

Приложение Б.

зернённая алюминиевая фольга

Я выброла этот материал, поскольку формы изготовленные на нём обладают более высокой тиражеустойчивостью.

Материалы перечисляются с указанием операции или процесса, для которых они предназначены.

Таблица 6 - Выбор и обоснование выбора формного оборудования

Наименование процесса или операции

Рациональные варианты оборудования для выполнения процесса (операции)

Выбранное оборудование и его краткая техническая характеристика

Обоснование выбора

Копирование

контактно-копировальные рамы фирмы SACK:

1. Серия 19

2. Серии 119 и 20

Компоновка узлов и конструкция рамы

на несущей панели электрошкафа расположены: высокопроизводительный вакуумный насос, электронный вакуумный датчик, встроенный микропроцессор, блок питания галогеновой лампы и всасывающий вентилятор;

цельнометаллический корпус, полностью закрывающийся защитным металлическим экраном, на поворотных колесиках с ножками, регулируемыми по высоте;

от 5 (для форматов рамы от 1150х950 мм) до 7 (для форматов рамы до 850х650 мм) выдвижных ящиков для хранения формных пластин и готовых форм;

расположение операционной панели в верхней части рамы;

антистатический резиновый коврик, обеспечивающий равномерный прижим;

двухступенчатая система вакуумирования;

осветитель с металл-галогеновой лампой мощностью 1500, 3000, 5000 или 6000 Вт с двухступенчатой системой регулировки силы излучения, автоматически закрывающейся шторкой, с защитным стеклом и с системой воздушного охлаждения или металл-галогеновой лампой быстрого запуска мощностью 3000 или 5000 Вт;

люминесцентные лампы желтого света для облегчения позиционирования экспонируемого материала.

Проявление

Промывка

1. Проявочные процессоры фирмы UNIGRAPH

2. Проявочные процессоры фирмы GLUNZ&JENSEN

Inter Plater 85HD/135HD

Проявочные процессоры фирмы GLUNZ&JENSEN

Inter Plater 85HD/135HD

Я выбрала это оборудование так как, проявочные процессоры Inter Plater 66 и Inter Plater 85HD/135HD предназначены для проявки, промывки, гуммирования и сушки позитивных и негативных односторонних офсетных пластин. Общее микропроцессорное управление и контроль с единого пульта позволяет выполнять следующие функции:

контроля за прохождением пластины;

подсчета количества пластин;

регулировки скорости проявления;

регулировки и поддержания температуры проявления и сушки;

автозаполнения и автодолива проявителя;

автоматической очистка гуммирующих валов.

Приложение В.

Очистка вводы

1. Устройство рециркуляции и очистки воды Water Ecology Unit

2. Устройство рециркуляции воды WR 25

Устройство рециркуляции и очистки воды Water Ecology Unit

Устройство предназначено для очистки и рециркуляции сточных вод после промывки пластин в проявочных процессорах. Устройство позволяет использовать проявочные процессоры без подключения к водопроводу и канализации. Состоит из резервуара картриджа и фильтра. Имеется датчик давления подаваемой воды и возможность изменения скорости подачи, а также датчики засоренности фильтра и картриджа, и пиковое значение пригодности циркулирующей воды.

Технические характеристики

Емкость бака, л

Электропитание, V/Hz/А

Габариты (ДхШхВ), см

Контроль офсетной печатной формы

Столы для контроля и корректировки качества офсетных печатных форм VCT: - VCT 1 - VCT 2

Эти столы представляют собой вертикальные столы для установки контролируемых офсетных пластин, снабженные осветителем и пятикратным увеличительным стеклом, закрепленными на специальной передвижной линейке. Столы могут поворачиваться для работы сидя или стоя.

Серия включает две модели: VCT 1 и VCT 2, отличающиеся размерами рабочего стола.

Технические характеристики

Показатели

Размер рабочего стола, мм

1. Монтажные столы серии LT/LM

2. Комбинированные монтажные столы серий CAM 0B и 3B

Монтажные столы серии LT/LM

Я выбрала эти столы, поскольку комбинированные монтажные столы серий CAM 0B и 3B фирмы JUST NORMLICHT предназначены для участков монтажа фотоформ с недостаточным количеством места для размещения отдельно монтажного стола и шкафа с выдвижными ящиками для хранения готовых монтажей. Наличие в индексе модели аббревиатуры ST указывает на то, что это горизонтальный стол с регулировкой высоты подъема от 75 до 90 см. и МV - с возможностью наклона рабочей поверхности стола на угол до 85° и регулировкой высоты подъема от 75 до 90 см. Цифра в конце индекса указывает на рабочий размер стола.

ПриложениеД.

Выводы: Проанализировав с помощью Интернета и книг, которые даны в списке используемой литературы, возможные варианты оборудования и материалов для формных процессов, я для своего издания выбрала, на мой взгляд, наилучшие варианты:

· для копирования я выбрала контактно-копировальные рамы фирмы SACK-Серия19

· для проявления промывки и сушки я выбрала проявочные процессоры фирмы GLUNZ&JENSEN - Inter Plater 85HD/135HD

· для очистки воды я выбрала устройство рециркуляции и очистки воды Water Ecology Unit

· для контроля офсетной печатной формы я выбрала стол для контроля и корректировки качества офсетной печатной формы VCT 2.

· Для монтажа я выбрала монтажные столы серии LT/LM

формный допечатный издание образец

Должна отвечать определенным критериям качества. Качество печати зависит от очень многих факторов. Об основных факторах, оказывающих влияние на качество , Вы можете прочитать в разделе " ".

Представляет собой систему со многими параметрами, изменение одного из которых оказывает влияние на весь процесс печати.

Существуют определенные методы контроля качества оттисков, измерительная техника. В данном разделе дан только краткий обзор показателей качества. К важнейшим критериям качества относятся:

  • Равномерность оптической плотности растровых изображений.

Даже небольшие различия в оптической плотности изображения, имеющего достаточно большие участки, отличающиеся равномерностью тона, как правило, заметны для нашего глаза. На оттисках подобные колебания проявляются в виде пятен или полос.

  • Равномерность оптической плотности плашки
  • Градационная передача растрового изображения

Качество печати может значительно страдать от изменений размеров растровых точек. Основными факторами, оказывающими влияние на точность воспроизведения в офсетной печати, являются офсетное резиновое полотно, а также настройка печатного оборудования. К значительным изменениям в градационной передаче могут привести отклонения в усилии прижима между формным и офсетным цилиндрами. К значительным цветовым изменениям на оттиске приводит неправильно выбранная величина давления между офсетным и печатным цилиндрами.

На полученном а процессе печати изображении могут появляться отклонения в цветопередаче, обусловленные деформацией растровых точек в виде увеличения их размеров.

Двумя важнейшими параметрами, определяющими качество офсетной печати, являются растискивание и дробление растровых точек.

Растискивание - сдвиг контуров растровых точек. Причинами данного явления могут являться относительные перемещения между поверхностями печатной формы и офсетного цилиндра или же между запечатываемым материалом и офсетным цилиндром в результате чего поверхности прокатываются неточно друг по другу. Растискивание может происходить как в направлении печати, так и в боковом направлении. Причина растискивания может состоять в повышенном давлении между двумя соприкасающимися цилиндрами. Также к данному дефекту может привести недостаточно натянутое офсетное полотно или слишком большая подача краски.

Дробление - увеличение растровых точек, при котором вокруг них образуется двойной или многократный тенеобразный контур. Причиной дробления могут являться колебания приводки во время печати. Обусловлены данные колебания могут быть как печатной машиной, так и бумагой.

  • Шаблонирование
  • Микронеоднородность

Микронеоднородность - своеобразная пятнистость красочного слоя на запечатанном материале, возникающая вследствие неравномерности впитывания красочного слоя в запечатываемый материал при его прохождении между печатными секциями печатной машины. На неравномерность влияют свойства запечатываемой бумаги: однородность структуры и поверхностного слоя бумаги.

  • Треппинг

Треппингом называют параметр, который характеризует переход второй краски на предыдущую при их последующем наложении. Большое влияние на расщепление краски оказывает такой ее параметр, как липкость. Для хорошего восприятия уже нанесенной краской последующей краски, новая краска должна иметь меньшую липкость, чем предыдущая.

  • Абсолютное значение оптической плотности и координаты цветности
  • Приводка и совмещение

Данный параметр является одним из важнейших параметров качества офсетной печати. Означает он точное совпадение оттисков при последовательном наложении красок в многокрасочной печати. От приводки зависит четкость получаемого изображения.

  • Глянец, его равномерность
  • Вид растрирования
  • Белизна и равномерность белизны запечатываемого материала.

В четырехкрасочной печати белизна материала оказывает значительное влияние на воспроизводимый цветовой охват. Высокой степенью белизны обладают мелованные бумаги.

Для измерения параметров качества офсетной печати используют определенные методы и средства измерения, в частности, денситометрию, колориметрические измерения, измерения глянца, точности совмещения красок белизны и т.д.

Усовершенствование формных материалов офсетной печати

В области усовершенствования формных материалов главными направлениями являются: расширение ассортимента и объемов выпуска предварительно сенсибилизированных монометаллических пластин нового поколения, которые отличаются высокой тиражестойкостью; создание материалов для прямого безплёночного изготовления печатных форм; изобретение форм для печати без увлажнения.

На рынке формных материалов на сегодняшний день есть большой ассортимент пластин разного назначения: для малых, средних и больших тиражей; для негативного и позитивного копирований; высокочувствительные пластины для прямого экспонирования в лазерных выводных устройствах; для электрографического способа изготовления форм. Выпускаются также разные типы подложки, в частности на бумажной, пластиковой и алюминиевой основах.

В Украине в последнее время идёт поиск новых материалов и технологий для офсетного способа печати. Так, УкрНИИППом им.Т. Шевченко (г. Львов) создан офсетный формный материал «Семела», предназначенный для изготовления офсетных форм при печати малотиражной продукции на машинах типа «Romayor» и «Dominant». Это полиэтилентерефталатная пленка с последовательно нанесенными на нее металлическим и светочувствительным слоями, ее технические данные такие:

Максимальная спектральная чувствительность, нм 320...400

Время экспонирования при энергетической освещенности 50 Вт·м~2, с, не больше 60

Время проявления, с, не больше 50

Линиатура воссоздаваемого растра, линий/см, не меньше 48

Тиражестойкость отпечатков, не меньше 100

Гарантийный срок сохранения, мес., не меньше 6

Офсетные печатные формы изготавливают контактным способом копирования с использованием УФ источника света по схеме «позитив -- негатив» или «негатив -- позитив». Для проявления форм используют экологически чистые слабощелочные водные растворы.

УкрНИИППом им.Т. Шевченко разработаны также предварительно сенсибилизированные монометаллические офсетные формные пластины на зернёном алюминии, полученные фотомеханическим способом (табл. 1). Пластины изготовляют со светочувствительным слоем: позитивным -- на основе ортонафтохинондиазида или негативным -- на основе акрилатного сополимера. УкрНИИППом им.Т. Шевченко разработан технологический процесс (табл. 2) и оборудование для регенерации алюминиевых офсетных пластин такого формата:

минимальный, мм 530х650

максимальный, мм 700х85

толщина, мм 0,30,8

Таблица 1. Техническая характеристика предварительно сенсибилизированных монометаллических офсетных пластин

Показатель

Пластины сенсибилизированные

позитивные

негативные

Формат пластин, мм

Толщина основы, мм

Толщина копировального слоя, мм

Разрешающая способность, мм~1

Срок сохраняемости, год

Время экспонирования,· мин

Время проявления, с

Тиражестойкость форм, тыс. отпечатков

Для осуществления этого процесса создан комплект оборудования, который состоит из: кювет ФКП-1000 для снятия печатной краски; рихтовальных вальцев ФВН-85; установки ФХО-85-1 для первичной химической подготовки поверхности машины с целью зернения поверхности алюминиевого листа (электромеханического или механического); установки ФХО-85-11 для дальнейшей химической обработки поверхности алюминиевого листа; оборудования для технологических испытаний регенерированных пластин (экспонирующая установка и проявка кювет ФКП-1000). Применение специализированного оборудования для регенерации алюминиевых пластин даст возможность нормализовать технологический процесс и повысить производительность работы. Гарантируется изготовление качественных офсетных формных пластин повторного использования, которое значительно снизит себестоимость полиграфической продукции, обеспечит сбережение алюминия, а также уменьшит валютные затраты из-за отсутствия в Украине производства полиграфического алюминиевого проката и предварительно сенсибилизированных офсетных пластин. Акционерное общество «Полиграфия» (г. Москва) разработало технологию изготовления предварительно сенсибилизированных офсетных формных пластин с позитивным светочувствительным слоем на зеркальном алюминии. Основой пластин является лента из алюминиевого сплава АМ-2 повышенной прочности, поверхность которой обработана способом, сухого щеточного зернения. Пластины имеют хорошую градационную передачу и дают возможность легко воссоздавать мелкие детали изображения в любых видах печатной продукции (в частности, высокохудожественной изобразительной). Технические характеристики пластин, которые изготовляет Дмитривский исследовательский завод алюминиевой ленты (г. Дмитрив Московской обл.), такие:

Формат, мм:

минимальный 1050х7

максимальный 1160х1420

Толщина пластин, мм 0,3

Прочность основы, МПа 255...335

Шероховатость поверхности основы, мкм 0,5...0,7

Толщина светочувствительного слоя, мкм 3

Срок хранения, час 1

Разрешающая способность, мм 25

Тиражестойкость форм, тыс. отпечатков:

без термообработки светочувствительного слоя 50...70

с термообработкой 250

Схема технологического процесса регенерации офсетных формных пластин

офсетный печать сенсибилизированный

Печатные формы, изготовленные на этих пластинах, имеют высокие печатно-технические свойства и могут использоваться на флатовых и рулонных офсетных машинах.

Московской государственной академией печати и AО «Полиграфия» созданы многослойные офсетные пластины, предназначенные для полиграфического воспроизведения информации в выводных устройствах с энергетическим лазерным излучением видимого спектра. Состав пластин: подложка, копировальный слой на основе ортонафтохинондиазидов, фотоприемочный слой на основе галогенида серебра. Основные технические данные этих пластин, которые изготовляет Московский завод технических фотопластинок, такие:

Спектральная чувствительность в любой зоне видимого

спектра излучения " 0,44...0,8

Разрешающая способность, мм"" до 30

Тиражестойкость форм, тыс.отпечатков 100

Использование многослойных офсетных пластин дает возможность:

сократить технологический процесс выпуска изданий;

уменьшить номенклатуру используемого оборудования и материалов, а также производственные площади и количество работающих;

разработать технологию полностью автоматизированного допечатного процесса;

применить для регистрации изображения выводные устройства с видимым спектром излучения, которые обеспечивают низкие энергозатраты, высокие скорость и точность записи.

Ряд зарубежных фирм-производителей предварительно сенсибилизированных офсетных пластин наращивают мощности производства их, вводят в действие новые заводы и поставляют на мировой рынок новые, усовершенствованные типы этих пластин. Ежегодный рост производства предварительно сенсибилизированных офсетных пластин оценивается в 4...6 %. Так, по приведенным в литературных источниках данным мировой рынок этих пластин в 2006 г. составлял 200 млн. м 2 , из них на Европу приходилось 65 млн. м 2 , на Японию -- 70 млн. м 2 и на Северную Америку -- около 50 млн. м 2 . Почти все фирмы-производители предварительно сенсибилизированных офсетных пластин выпускают оборудование для их экспонирования и обработки. Для современных моделей этого оборудования характерными являются высокое качество дизайна, компактность. Управление ими осуществляется с помощью ЭВМ, которое дает возможность автоматизировать процесс обработки пластин.

Ведущее место в мире относительно объема производства офсетных формных пластин до 2006 г. принадлежало немецкому концерну «Hoechst», который выпускал такие пластины, как «Ozasol № 7», «Ozasol № 8», «Ozasol № 90». Первая является негативной фотополимерной, а вторая известная как первая офсетная формная пластина с высоким уровнем чувствительности для проецирования и лазерной экспозиции. Формная пластина «Ozasol № 90», которая впервые демонстрировалась на выставке «Drupa 90», предназначенна для изготовления ФОПП по технологии ctp.

Высококачественные формные пластины «Agfa Ozasol». В 2006 p. бельгийский концерн «Agfa-Gevaert N.V.» стал собственником предприятий одного из самых известных и популярнейших производителей монометаллических пластин в мире -- «Kalle-Albert», который раньше принадлежал фирме «Hoechst».

Знаменательным событием 2007 г. становится купля этой фирмой еще одного производителя офсетных пластин -- отдела компании «DuPont», который специализировался на этом производстве. Со временем фирма «Agfa» уверенно захватила позиции одного из ведущих производителей офсетных пластин в мире. Сегодня заводы из производства печатных пластин «Ozasol» есть в Германии, Италии, США, Бразилии и Южной Корее.

Из всех офсетных пластин, которые производятся фирмой «Agfa», на рынок Украины поставляются пластины «Agfa Ozasol».

Ассортимент пластин, которые выпускаются под торговой маркой «Agfa Ozasol», содержит ряд позитивных и негативных материалов разного назначения. Они различаются типом копирования (позитивные и негативные), тиражестойкостью (пробный, мало- и высокотиражная печать), способом экспонирования (традиционный в УФ-лучах и лазером по технологии «computer-to-plate») и другими характеристиками. Перечень пластин, которые пользуются сегодня наибольшим спросом, приведен в табл. 3. Металлические предварительно сенсибилизированные пластины «Agfa Ozasol» завоевали заслуженное признание на мировом рынке благодаря замечательным печатным характеристикам. Комбинация прецизионного электрохимического зернения и крепкого анодного слоя на поверхности пластин обеспечивает их идеальное поведение в печатной машине (без окисления и конденсации), а также замечательное воспроизведение даже мельчайших деталей при высокой тиражестойкости.

Наиболее распространенными и универсальными пластинами являются положительные марки P5S. Они считаются стандартными пластинами широкого назначения, хорошо работают как в рулонных, так и в листовых печатных машинах, потребляют небольшое количество увлажняющего раствора и дают возможность быстро достичь оптимального баланса «краска-вода». Основные технические параметры пластин P5S приведены в табл. 4.

Изготовление офсетных предварительно сенсибилизированных пластин «Ozasol P5S» -- это сложный многостадийный процесс, в котором каждая операция направлена на достижение высокого качества печатной продукции. Алюминиевая основа толщиной 0,15 или 0,3 мм, полученная методом холодной прокатки, поддается комплексной электрохимической обработке, которая состоит из нескольких этапов:

обработка пластины в щелочном растворе для очищения поверхности;

электрохимическое зернение под влиянием электрического тока большого напряжения (несколько десятков тысяч вольт) в специальных ваннах. Таким образом создается пористая структура алюминия, который обеспечивает хорошую адгезию поверхности пластины со светочувствительным слоем. Кроме того, кристаллическая структура поверхности -- основа для формирования нужного уровня разрешающей способности. Также на этой стадии создаются предпосылки для гидрофильности (способности к увлажнению водой);

анодирование (наращивание оксидной пленки на микропористую структуру алюминия для предоставления поверхности прочности, нужной для исключения механических и химических повреждений во время печати). Оксидная пленка характеризуется высокими адсорбционными свойствами, которые гарантирует крепкое сцепление с копировальным слоем и определяет высокую тиражестойкость печатной формы (100 тыс. отпечатков без термообработки), а также обеспечивает стабильную гидрофильность промежуточных элементов. При этом прочность поверхности возрастает приблизительно в 1000 раз, а также создаются благоприятные условия для оптимального баланса «краска-вода» во время печати;

наполнение оксидной пленки придаёт промежуточным элементам стойкие гидрофильные свойства, уменьшает избыточную пористость поверхности, увеличивает тиражестойкость пластины.

На подготовленную таким способом пластину наносится микропигментный светочувствительный копировальный слой на основе ортонафтохинондиазидов (толщиной 2 мкм).

Таблица 3. Ассортимент и свойства пластин «Agfa Ozasol» Позитивные предварительно сенсибилизированные монометаллические пластины для листовой и рулонной печати

Тнражестойкость, тыс.отпечатков

Стандартные пластины для средних и больших тиражей. Обработанные электрохимическим зернением из НМОд. Рекомендуются для печати за методом стохастического растрирования «Agfa Cristal-Raster»

Для пробной печати малой тиражестойкостью

Для средне- и малотиражной печати на малоформатных листовых печатных машинах. Оброботанное электромеханическим зернениемиз HNO

Для малых и средних тиражей

Для малых и больших тиражей. Обработанные электромеханическим зернением из HCL; требуют малого времени экспонирования

Для больших и средних тиражей. Обработанные электрохимическим зернением из HCL

Универсальные позитивно-негативные пластины для больших и средних тиражей

Для больших тиражей. Обработанные двойным зернением, обеспечивают максимальную разрешающую способность. Рекомендуются для печати за методом стохастического растрирования «Agfa CristalRasten>

Для очень больших тиражей (свыше 200 тыс.) со специальной обработкой поверхности

Негативные предварительно сенсибилизированные монометаллические пластины для листовой и рулонной печати

Тиражестойкость, тыс. отпечатков

Для больших тиражей. Обработанные электромеханическим зернением с HNO. Предназначены для печати упаковок, газет, непрерывных формуляров

Двусторонние пластины, обработанные электромеханическим зернением из HNO. Рекомендуются для печатания книжек

Пластины с двойным зернением, максимально тиражестойкости. Рекомендуются для газетной печати

Для средних и больших тиражей любой продукции Обработанные электромеханическим зерненнем из НС1

Пластины для проекционного экспонирования со стойким фотополимерным слоем. Обработанные электромеханическим зернением и НСl. Рекомендуются для печати книг и постеров

Для лазерных рекордеров. Обработанные електромеханическим зернением и НСl

Для лазерных рекордеров (улучшенный вариант N90

Большая скорость)

Таблица 4. Основные технические параметры пластин P5S

Сенсибилизация пластины осуществляется под контролем специальной системы, которая следит за равномерным нанесением, распределением и сушением копировального слоя В такой способ обеспечивается одинаковая толщина покрытия на всей поверхности пластины, в том числе по краям.

Копировальный слой на основе водонерастворимых пленкообразующих смол с диазосоединением в качестве светочувствительного компонента содержит также специальные абразивные микропигменты (дисперсионность частиц З...4 мкм). Выступая над поверхностью, микропигменты образуют благоприятные условия для быстрого достижения вакуума в копировальных рамах и обеспечивают замечательный контакт между диапозитивом и светочувствительным слоем во время экспонирования. Это предотвращает возникновению «пустых копий» (то есть частичного отсутствия изображения в разных местах на печатной форме вследствие плохого прилегания фотоформы к копировальному слою). Готовые пластины разрезают на стандартные форматы (предлагается свыше 300 размеров пластин «Ozasol P5S» для листовых и свыше 1000 для рулонных машин от 225х370 и 224х387 мм до 1490х1980 и 1158х1689 мм соответственно). Высокая точность разрезания (±0,8 мм на 1 м длины) и гладкие края обеспечивают удобство в эксплуатации и предотвращают повреждение цилиндров и валиков печатных машин. Перед упаковыванием пластины проверяют лазерным лучом на наличие дефектов в копировальном слое. Пакуют пластины в бумагу или пластик (в зависимости от размера) и составляют в картонные или деревянные коробки. В таком защищенном от повреждения паковке печатные пластины «Ozasol» поступают в типографии всего мира.

После экспонирования и проявки копировальный слой может играть роль печатного элемента. Он имеет зелено-голубой цвет, а во время экспонирования вследствие разложения светочувствительного компонента приобретает голубой цвета. При этом создается максимальный цветной контраст между печатными и промежуточными элементами, который облегчает контроль качества копии.

Высокий показатель шероховатости обеспечивает плотный контакт фотоформы и пластины во время копирования и облегчает печатный процесс благодаря механическому содержанию увлажняющей пленки. Пластинам для рулонных печатных машин, которые работают на больших скоростях, присуща более развитая поверхность. Значительная степень зсрнения нужна также для стабильности свойств пластины и печатной формы в условиях колебания температуры окружающей среды. Кроме того, степень зернения косвенно влияет на разрешающую способность. Електрохимическое зернение в азотной кислоте обеспечивает более регулярную шероховатую поверхность.

Показатели разрешающей и выделительной способностей обуславливают уровень воспроизведения мелких, в том числе растровых, элементов, достаточный для производства высококачественной продукции. Значительный уровень светочувствительности определяет малое время экспонирования пластин (от 40 с до 2 мин). Сокращение времени экспонирование обеспечивает меньшее приращение пятнышек на печатной форме и точное воспроизведение средних и глубоких полутонов. Процесс проявки характеризуется высокой избирательностью, которая обеспечивает сохранение минимальных печатных элементов после проявки копии. Благодаря этому на отпечатке создается изображение с богатой гаммой оттенков.

Во время обработки проэкспонированной пластины P5S рекомендуется использовать фирменные химикаты «Agfa Ozasol» -- проявитель, регенератор для него, гуммирующий раствор, очистительную эмульсию, защитный раствор для термообработки. Это обязательно обеспечит надежность использования пластины в печатных машинах, высокое и стабильное качество продукции.

Водный слабощелочной раствор проявителя, который применяется для пластин «Agfa Ozasol», расходуется во время обработки экономно и, кроме того, подлежит действию регенерующего соединения. Незначительная затрата и неагрессивность проявителя обеспечивают почти экологически чистую обработку.

Для увеличения тиражестойкости печатных форм до 500 тыс. отпечатков применяют термообработку. Эта операция рекомендуется также, если печать выполняется с использованием красок УФ сушки. Изготовление печатных форм на основе материалов «Agfa Ozasol» экологически чистое, не требует жесткого соблюдения режимов температуры и влажности, обеспечивает высокую производительность технологического процесса и гарантирует хорошие результаты.

Фирма «Howson-Algraphy» совместно с фирмой «Du Pont» разработала технологию изготовления новых офсетных печатных форм «Stiveriith». Вместо традиционного светочувствительного слоя на формную пластину наносят специальный светочувствительный сереброудерживающий слой. Печатное изображение приобретают экспонированием форм с помощью лазера, которым управляет ЭВМ. Преимуществом в этом случае является полное исключение процесса изготовления фотоформ, высшая разрешающая способность форм, сокращение времени изготовление печатных форм до 3 мин. Фирма выпускает оборудование для обработки этих пластин. Процесс обработки их занимает 90 с.

Фирма «Howson-Algraphy» создала новую автоматическую линию изготовления офсетных формных пластин, предназначенных для выпуска негативных и позитивных форм всех видов, в том числе с чувствительностью к лазерным излучениям и обрабатываемых по электростатическим технологиям. Линия используется для изготовления пластин «Super-Spartan», которые обеспечивают мелкозернистые изображения с высокой линиатурой растрирования. Размеры линии -- 70х6х6 м. Замена рулонов алюминиевой ленты автоматическая.

Новые офсетные формные пластины «Proft-Print SD», разработанные в 2004 г. фирмой «Eskafot Gmb» (Германия), которые отличаются высокой чувствительностью, минимальным временами экспонирования и высокой разрешающей способностью, имеют толщину 0,2 мм. Формы SD могут использоваться практически со всеми офсетными красками для флатового и рулонного печатания, их тиражестойкость -- 10 тыс. отпечатков. Формный материал SD, созданный на основе полиэфира, может поставляться в рулонах длиной до 61 м разной ширины.

Формные пластины «Plazer» предназначены для прямого изготовления ФОПП на лазерных принтерах. Сравнительно с другими предварительно сенсибилизированными офсетными металлическими пластинами эти пластины дают возможность исключить из технологического процесса изготовления печатных форм фотопленку, химикалии для ее обработки, копировальное оборудование, повысить оперативность изготовления форм. Максимальный тираж отпечатков с одной печатной формы -- 15 000 экземпляров.

По желанию заказчика при снабжении формных пластин «Plazer» могут быть добавлены лоток для введения пластин в принтер и перфоратор для закрепления форм в печатных машинах типа ПОЛ-35 и «Romajor».

Фирма «Printing Developments Inge» изготовляет биметаллические пластины, в которых гальваническим способом на алюминиевую пластину наносится слой меди. Этот слой заменяет традиционное полимерное покрытие. Изображение, которые воссоздается медным покрытием, можно откорректировать для компенсации увеличения растрового элемента во время печати. При использовании биметаллической формы требуется значительно меньше увлажняющего раствора, чем при применении обычных форм. Это облегчает управление балансом вода -- краска.

Совместное украинско-болгарское предприятие «СКС-Украина» является официальным дистрибьютером фирмы «POLYCHROME-POAR», которая выпускает предварительно сенсибилизированные алюминиевые офсетные пластины РР-1. Эти пластины сегодня успешно используются на многих предприятиях Украины. Пластины типа РР-1 предназначены для изготовления высококачественных офсетных форм способом позитивного копирования для листовых и рулонных машин. Технические характеристики пластин такие:

Тиражестойкость пластин, тыс. отпечатков:

сырых 100...150

после выжигания 300

Толщина пластин, мм 0,3; 0,15

Температура сохранения пластин, °С 5...20

Температура проявителя при проявлении пластин, "С 18...23

Затраты проявителя для обработки пластин при проявке, л/м2:

ручной 0,3

машинной 0,2

Гарантийный срок хранения пластин и химикатов, год 1

В последние годы в Украине приобретают популярность пластины из алюминия (электрозернёные, анодированные, предварительно сенсибилизированными как позитивные, так и негативные) с соответствующими химическими продуктами и оборудованием для обработки офсетных печатных форм всемирно известной фирмы «Lastra» (Италия). Эта фирма выпускает позитивные пластины «FUTURA ORO» и негативные «NITIO DEV».

Пластины «FUTURA ORO» имеют тиражестойкость при нормальных условиях свыше 250 тыс. отпечатков, а после термозакалки - свыше 400 тыс. отпечатков. Эти пластины дают возможность печатать с минимальным количеством воды, обеспечивая высокую точность репродукции и четкость изображения, а также насыщенность краски.

«NITIO DEV» - это новые негативные пластины, которые, начиная из сентября 2007 p., выпускаются вместо пластин «NITIO SAN» и имеют ряд значительных преимуществ сравнительно с ними, о чем свидетельствуют такие данные:

«NITIO SAN» «NITIO DEV»

Цвет зеленый оливковый сине-зеленый

Шероховатость R мкм 0,51...0,55 0,55...0,6Масса светочувствительного слоя, г/м2 0,9 0,9

Масса анодированного пласта, г/м2 2...2,2 2,5...2,7Время экспонирования, с " 90 55

По своими техническими характеристикам «NITIO DEV» -- это предварительно сенсибилизированные негативные пластины, которые в особенности рекомендуются для печати газет массовых тиражей. Они могут использоваться для сканирования в системах контроля и программирования печати, поскольку имеют довольно высокий контраст изображения сравнительно со светлым и блестящем тоном электрозерненой поверхности.

На основании вышеизложенного можно отметить, что первым простейшим решением есть создание нового оборудования при применении традиционных формных материалов, если изображение на форме получается с помощью мощного лазера. При этом можно использовать любую светочувствительную пластину негативного или позитивного способа копирования, но нужно специальное экспонирующее оборудование, например устройство «Plate Setter Aurora» фирмы «OPTRONICS», где применен итрий-алюминий-гранатовый (YAG) лазер мощностью 400 мВт. Для сравнения следует отметить, что при лазерном экспонировании сверхчувствительных материалов нужны лазеры мощностью 0,2...30 мВт.

Вторым направлением развития лазерных технологий «computer-to-plate» является создание новых сверсветочувствительных материалов. Это пластины с фототермозатвердевающие, серебросодержащие и фотоведущими слоями.

Примером лазерного формирования изображения в фототермозатвердевающих слоях являются технологии с применением процесса фотополимеризации с дальнейшей термообработкой пластин на алюминиевой основе «Ozasol N90» фирмы «Hoechst-Kalle», пластин «Electra» фирмы «Horsell-Aniter», пластин «Thermal Infrared» фирмы «Kodak».

Вторая группа сверсветочувствительных материалов -- это многослойные формные пластины на алюминиевой основе с серебросодержащими слоями. В этой технологии используют принцип формирования изображение в слое, который после проявки и фиксирования сыграет роль маски при дальнейшем экспонировании и обработке позитивных или негативных копировальных слоёв (пластины «Polychrome CTX» фирмы «Polychrome», пластины «FNH» фирмы «Fuji Foto Film»), или принцип диффузии комплексного соединения галогениду серебра в неэкспонированных участках. После восстановления соединений к металлическому серебру эти участки служат печатными элементами («серебряно-печатные» элементы). Это пластины «Ozasol» Р80 и Р90 фирмы «Hoechst-Kalle», пластины «Silverlith SDB» фирмы «DuPont-Howson», пластины «Lithostar» фирмы «Agfa».

Аналогичные работы ведут упомянутые фирмы для выпуска пластин на недорогих основах, таких как синтетическая пленка и бумага. Фирма «Mitsubisi» разработала формный материал с серебросодержащими фотодиффузными слоями «Silver Digiplate SDP». Материалы этой фирмы классифицируют по типу основы. Например, на полиэстеровой основе выпускают материалы SDP-F, а на бумажной -- SDP-R. Кроме того, марка материала содержит условное обозначение лазера, которые применяют для экспонирования форм (AR -- аргоновый, HN -- гелий-неоновый, LD -- инфракрасный и YAG -- итрий-алюминий-гранатовый лазеры). К этой группе надо включить пластины «Оnyx» фирмы «3М» на полиэстеровой основе, стоимость которых составляет только 70 % стоимости обычных форм, а также материал «Setprint» фирмы «Agfa».

Пластины для лазерного экспонирования, где применен принцип электрографии и фотопроводящие светочувствительные слои, обеспечивают, к сожалению, невысокое качество форм. Фотопроводящие слои на основе неорганических соединений (CdS, Zn) уступают по качеству образования изображения фотопроводящим слоям на основе органических соединений. Примером материалов с светочувствительными органическими соединениями являются пластины OPC-D фирмы «Poluchrome» на алюминиевой основе с использованием в процессе проявления редкого тонера, которые экспонируют в системе ОРС 2500, пластины «Laserite» фирмы «Hoechst-Kalle». Фирма «Fuji Film Company» разработала технологию изготовления форм электрографическим способом «Electrophotographic Direct Plate Making System» (ELP) на бумажной основе, фирма «ЗМ» создала материал HSP, в системах прямого экспонирования используют материал «Тессо Direct Image Paper Plates», где проявка осуществляют сухим тонером, и «Тессо Master Polyester» соответственно на бумажной и полиэстеровой основах.

Создание новых сверхсветочувствительных формных материалов не ликвидирует потребности усовершенствования оборудования для лазерного экспонирования форм. В настоящее время это более 30 поставщиков оборудования для этих целей. Для сверхчувствительных формных материалов разработаны системы «Creo 3244», «Gutenberg» фирмы «Linotype-Hell», «Plate-Rite PL-R 1008» фирмы «Screen», «Do Plate 800» фирмы «Scitex», «UP-1000» фирмы «POLYCHROME»; для пластин «Ozasol N90» фирмы «Hoechst» - устройство «Raystap> фирмы «Scitex». Для пластин «Digiplate» фирмы «Mitsubisi» создана: специальная система «Panther Plate 34/Р» фирмы «Prelress Solutions» (Varityper), разрешающая способность которой 1200 точек/см, вывод информации на форму формата A3 осуществляется за 2 мин; aппарат «Escofot DXF» (Multigraphics Quick Set SL) фирмы «Eskofot», запись формата 52х52 см -- за 3 мин; автоматы «AM Multi SP», 65TPM, EР 988; линию «Extrema Laser», автоматизированную компьютерную систему «Laser Xposer» фирмы «Danish Hope Computer Corporation», лазерный автомат для записи информации на формную пластину фирмы «Surpess» и др.

Другие технологии, где изображение получается не в светочувствительных слоях, а печатанием его лазерным принтером на формный материал на бумажной основе «Plate Maker» фирмы «XANTE», «Tecco» на синтетической основе фирмы «Kimoto» или фирмы «Autotype», дают значительно низшее качество форм. Такое же качество можно обеспечить, используя напыление изображения краской, управляемой компьютером, которое сыграет роль маски при дальнейшем изготовлении формы фирмы «Lastra», где струйный принтер присоединен к линии «Extrema Ink Jet» или к пластине «Toray Waterless Plate» фирмы «Polychrome». Также возможно использование для этого термочувствительных слоёв в устройствах «Plate Setter» фирмы «MAN ROLAND», где на гидрофильную поверхность печатного цилиндра изображения с красящей ленты переносится лазерным лучом благодаря теплоте. При этом время на изготовление формы формата A3 занимает 8,5 мин. Этот принцип использован в пленках «Laser-Mask» и формном материале фирмы «Polaroid».

Выбор типа пластины и технологии зависит от качества формы, формата и тиража, которые необходимо обеспечить. Конечно, прочность основы и ее деформация существенно влияют на тиражестойкость формы, а также качество.

Для повышения тиражестойкости и стабильности размеров осуществляют дополнительное ламинирование бумаги полиэтиленовой пленкой или алюминием. Для форм на синтетической полиэстеровой основе этого можно достичь увеличением ее толщины. Например, при толщине основы 0,12 мм формы выдерживают тираж 10 тыс. отпечатков, а при толщине 0,2 мм -- 25 тыс.

Формные материалы на полиэстеровой и бумажной основах используют для печатания малоформатной продукции низкого и среднего качества. Для печатания высококачественных цветных иллюстрированных изданий средних и больших форматов следует применять компьютерный вывод информации на формные материалы с алюминиевой основой, где формирование изображения осуществляется с использованием сверхчувствительных слоёв

© 2024 sun-breeze.ru
Новые идеи бизнеса - Животные и растения. Заработок в интернете. Автобизнес