Скачать презентацию на тему развитие атомной энергетики. Раздел презентации на тему атомная энергетика


ЯДЕРНАЯ энергетика (атомная энергетика) - отрасль энергетики, использующая ядерную энергию для электрификации и теплофикации; область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую. Основа ядерной энергетики - атомные электростанции. Первая атомная электростанция (5 МВт), положившая начало использованию ядерной энергии в мирных целях, была пущена в СССР в К нач. 90-х гг. в 27 странах мира работало св. 430 ядерных энергетических реакторов общей мощностью ок. 340 ГВт. По прогнозам специалистов, доля ядерной энергетики в общей структуре выработки электроэнергии в мире будет непрерывно возрастать при условии реализации основных принципов концепции безопасности атомных электростанций. Главные принципы этой концепции - существенная модернизация современных ядерных реакторов, усиление мер защиты населения и окружающей среды от вредного техногенного воздействия, подготовка высококвалифицированных кадров для атомных электростанций, разработка надежных хранилищ радиоактивных отходов и др.


Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло. Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.







Основное назначение электрических станций - снабжение электроэнергией промышленных предприятий, сельскохозяйственного производства, электрифицированного транспорта и населения.Неразрывность производства и потребления энергии предъявляет весьма высокие требования к надежности работы электрических станций, так как перебои в снабжении электроэнергией и теплом отражаются не только на экономических показателях самой станции, но и на показателях обслуживаемых ею промышленных предприятий и транспорта. В настоящее время атомные станции работают как конденсационные. Иногда их называют также атомными ГРЭС. Атомные станции, предназначенные для отпуска не только электроэнергии, но и тепла, называются атомными теплоэлектроцентралями (АТЭЦ). Пока разрабатываются лишь их проекты.


А) Одноконтурные Б) Двухконтурные В) Неполностью двухконтурные Г) Трёхконтурные 1 - реактор; 2 - паровая турбина; 3 - электрический генератор; 4 - конденсатор; 5 - питательный насос; 6 - циркуляционный насос: 7 - парогенератор; 8 - компенсатор объема; 9 - барабан-сепаратор; 10 - промежуточный теплообменник; 11 - жидкометаллический насос


Классификация атомных станций зависит от числа контуров на ней. Выделяют АЭС одноконтурные, двухконтурные, неполностью двухконтурные и трехконтурные. Если контуры теплоносителя и рабочего тела совпадают, то такую АЭС; называют одноконтурной. В реакторе происходит парообразование, пар направляется в турбину, где, расширяясь, производит работу, превращаемую в генераторе в электроэнергию. После конденсации всего пара в конденсаторе конденсат насосом подается снова в реактор. Таким образом, контур рабочего тела является одновременно контуром теплоносителя, а иногда и замедлителя, и оказывается замкнутым. Реактор может работать как с естественной, так и с принудительной циркуляцией теплоносителя по дополнительному внутреннему контуру реактора, на котором установлен соответствующий насос.




ЯДЕРНОЕ оружие - совокупность ядерных боеприпасов, средств их доставки к цели и средств управления. Относится к оружию массового поражения; обладает громадной разрушительной силой. По мощности зарядов и дальности действия ядерное оружие делится на тактическое, оперативно-тактическое и стратегическое. Применение ядерного оружия в войне гибельно для всего человечества. Атомная бомба Водородная бомба



Первая атомная бомба была применена американской армией после второй мировой войне на территории Японии. Действие атомной бомбы Ядерным, или атомным, называется вид оружия, в котором взрыв происходит под действием энергии, выделяющейся при делении атомных ядер. Это самый опасный вид вооружения на нашей планете. При взрыве одной атомной бомбы в густонаселённом районе число человеческих жертв превысит несколько миллионов. Кроме действия ударной волны, образующейся при взрыве, основным воздействием её является радиоактивное заражение местности в районе взрыва, которое сохраняется в течение многих лет. В настоящее время официально ядерное оружие имеют: США, Россия, Великобритания (с 1952 года), Франция (с 1960 года), Китай (с 1964 года), Индия (с 1974 года), Пакистан (с 1998 года) и КНДР (с 2006 года). В ряде стран, например, в Израиле и Иране, имеются небольшие запасы ядерного оружия, но официально они пока не считаются ядерными державами.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Атомная энергетика России Атомная энергетика, на долю которой приходится 16% выработки электроэнергии, относительно молодая отрасль российской промышленности. Что такое 6 десятилетий в масштабах истории? Но этот короткий и насыщенный событиями отрезок времени сыграл важную роль в развитии электроэнергетики.

3 слайд

Описание слайда:

История Дату 20 августа 1945 г. можно считать официальным стартом «атомного проекта» Советского Союза. В этот день было подписано постановление Государственного комитета обороны СССР. В 1954 году в Обнинске была запущена самая первая атомная электростанция – первая не только в нашей стране, но и во всем мире. Станция обладала мощностью всего 5 МВт, проработала 50 лет в безаварийном режиме и была закрыта лишь в 2002 году.

4 слайд

Описание слайда:

В рамках федеральной целевой программы «Развитие атомного энергопромышленного комплекса России на 2007-2010 годы и на перспективу до 2015 года» планируется построить три энергоблока на Балаковской, Волгодонской и Калининской атомных электростанций. В целом же 40 энергоблоков должны быть построены до 2030 года. При этом мощности российских АЭС должны с 2012 года ежегодно увеличиваться на 2 ГВт, а с 2014 года – на 3 ГВт, а суммарная мощность атомных станций РФ к 2020 году должна достичь 40 ГВт.

6 слайд

Описание слайда:

7 слайд

Описание слайда:

Белоярская АЭС Расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской). На станции были сооружены три энергоблока: два с реакторами на тепловых нейтронах и один с реактором на быстрых нейтронах. В настоящее время единственным действующим энергоблоком является 3-й энергоблок с реактором БН-600 электрической мощностью 600 МВт, пущенный в эксплуатацию в апреле 1980 - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

8 слайд

Описание слайда:

9 слайд

Описание слайда:

Смоленская АЭС Смоленская АЭС – является крупнейшим предприятием Северо-Западного региона России. АЭС вырабатывает в восемь раз больше электроэнергии, чем другие электростанции области, вместе взятые. Введена в эксплуатацию в 1976 году

10 слайд

Описание слайда:

Смоленская АЭС Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990. В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

11 слайд

Описание слайда:

12 слайд

Описание слайда:

13 слайд

Описание слайда:

Нововоронежская АЭС Нововоронежская АЭС – расположена на берегу Дона в 5 км от города энергетиков Нововоронежа и в 45 км к югу от Воронежа. Станция на 85 % обеспечивает потребности Воронежской области в электроэнергии, а также дает тепло для половины Нововоронежа. Введена в эксплуатацию в 1957 году.

14 слайд

Описание слайда:

Ленинградская АЭС Ленинградская АЭС – расположена в 80 км к западу от Санкт-Петербурга. На южном берегу Финского залива, снабжает электричеством примерно половину Ленинградской области. Введена в эксплуатацию в 1967 году.

15 слайд

Описание слайда:

Строящиеся АЭС 1 Балтийская АЭС 2 Белоярская АЭС-2 3 Ленинградская АЭС-2 4 Нововоронежская АЭС-2 5 Ростовская АЭС 6 Плавучая АЭС «Академик Ломоносов» 7 Прочие

16 слайд

Описание слайда:

Башкирская АЭС Башки́рская а́томная электроста́нция - недостроенная атомная электростанция, расположенная вблизи города Агидели в Башкортостане у слияния рек Белой и Камы. В 1990 году под давлением общественности после аварии на Чернобыльской АЭС строительство Башкирской АЭС было остановлено. Она повторила участь однотипных ей недостроенных Татарской и Крымской АЭС.

17 слайд

Описание слайда:

История На конец 1991 года в Российской Федерации функционировало 28 энергоблоков, общей номинальной мощностью 20 242 МВт. С 1991 года к сети было подключено 5 новых энергоблоков общей номинальной мощностью 5 000 МВт. На конец 2012 года в стадии строительства находятся ещё 8 энергоблоков, не считая блоков Плавучей атомной электростанции малой мощности. В 2007 году федеральные власти инициировали создание единого государственного холдинга «Атомэнергопром» объединяющего компании Росэнергоатом, ТВЭЛ, Техснабэкспорт и Атомстройэкспорт. 100 % акций ОАО «Атомэнергопром» передавалось одновременно созданной Государственной корпорации по атомной энергии «Росатом».

18 слайд

Описание слайда:

Выработка электроэнергии В 2012 году российские атомные станции выработали 177,3 млрд.кВт ч, что составило 17,1% от общей выработки в Единой энергосистеме России. Объем отпущенной электроэнергии составил 165,727 млрд.кВт·ч. Доля атомной генерации в общем энергобалансе России около 18 %. Высокое значение атомная энергетика имеет в европейской части России и особенно на северо-западе, где выработка на АЭС достигает 42 %. После запуска второго энергоблока Волгодонской АЭС в 2010 году, председатель правительства России В. В. Путин озвучил планы доведения атомной генерации в общем энергобалансе России с 16 % до 20-30 % В разработках проекта Энергетической стратегии России на период до 2030 г. предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

19 слайд

Описание слайда:

Атомная энергетика в мире В современном быстроразвивающемся мире вопрос энергопотребления стоит очень остро. Невозобновляемость таких ресурсов как нефть, газ, уголь заставляет задуматься об альтернативных источниках электроэнергии, наиболее реальным из которых сегодня является атомная энергетика. Ее доля в мировой выработке электроэнергии составляет 16%. Больше половины этих 16% приходятся на США (103 энергоблока), Францию и Японию (59 и 54 энергоблока соответственно). Всего (по состоянию на конец 2006 года) в мире действуют 439 ядерных энергоблоков, еще 29 находятся в различных стадиях строительства.

20 слайд

Описание слайда:

Атомная энергетика в мире По оценкам ЦНИИАТОМИНФОРМ, до конца 2030 года в мире будет введено в строй около 570 ГВт АЭС (в первых месяцах 2007 года этот показатель составил около 367 ГВт). В настоящий момент лидером по строительству новых блоков является Китай, который строит 6 энергоблоков. За ним идет Индия с 5 новыми блоками. Замыкает же тройку Россия – 3 блока. Намерения строить новые энергоблоки высказывают также и другие страны, в том числе из бывшего СССР и социалистического блока: Украина, Польша, Белоруссия. Оно и понятно, ведь один ядерный энергоблок сэкономит за год такое количество газа, стоимость которого эквивалентна 350 млн долларов США.

21 слайд

Описание слайда:

22 слайд

Описание слайда:

23 слайд

Описание слайда:

24 слайд

Описание слайда:

Уроки Чернобыля Что произошло на Чернобыльской атомной электростанции 20 лет назад? Из-за действий сотрудников атомной электростанции реактор 4-го энергоблока вышел из-под контроля. Его мощность резко возросла. Графитовая кладка раскалилась добела и деформировалась. Стержни системы управления и защиты не смогли войти в реактор и остановить нарастание температуры. Каналы охлаждения разрушились, вода из них хлынула на раскаленный графит. Давление в реакторе возросло и привело к разрушению реактора и здания энергоблока. При соприкосновении с воздухом сотни тонн раскаленного графита загорелись. Стержни, в которых содержалось топливо и радиоактивные отходы, расплавились, и радиоактивные вещества хлынули в атмосферу.

25 слайд

Описание слайда:

Уроки Чернобыля. Потушить сам реактор было совсем не просто. Это нельзя было делать обычными средствами. Из-за высокой радиации и страшных разрушений невозможно было даже приблизиться к реактору. Горела многотонная графитовая кладка. Ядерное топливо продолжало выделять тепло, а система охлаждения была полностью разрушена взрывом. Температура топлива после взрыва достигала 1500 и более градусов. Материалы, из которых был сделан реактор, при такой температуре спекались с бетоном, ядерным топливом, образовывая неизвестные раньше минералы. Надо было остановить ядерную реакцию, понизить температуру обломков и прекратить выброс радиоактивных веществ в окружающую среду. Для этого шахту реактора с вертолетов забрасывали теплоотводящими и фильтрующими материалами. Это начали делать на второй день после взрыва, 27 апреля. Только через 10 дней, 6 мая, удалось существенно снизить, но не прекратить полностью радиоактивные выбросы

26 слайд

Описание слайда:

Уроки Чернобыля За это время огромное количество радиоактивных веществ, выброшенных из реактора, было разнесено ветрами за многие сотни и тысячи километров от Чернобыля. Там, где радиоактивные вещества выпадали на поверхность земли, образовывались зоны радиоактивного заражения. Люди получали большие дозы радиации, болели и умирали. Первыми умерли от острой лучевой болезни герои-пожарные. Страдали и умирали вертолетчики. Жители окрестных сел и даже удаленных районов, куда ветер принес радиацию, вынуждены были покинуть родные места и стать беженцами. Огромные территории стали непригодны для проживания и для ведения сельского хозяйства. Лес, река, поле все стало радиоактивным, все таило невидимую опасность

Урок в 9 классеУчитель физики «МКОУ Мужичанская СОШ»
Волосенцев Николай Васильевич

Повторение знаний об энергии, заключенной в ядрах атомов;Повторение знаний об энергии, заключенной в ядрах атомов;
Важнейшая проблема энергетики;
Этапы отечественного атомного проекта;
Ключевые вопросы для обеспечения жизнеспособности в будущем;
Преимущества и недостатки АЭС;
Саммит по ядерной безопасности.

Какие два вида сил действуют в ядре атома?-Какие два вида сил действуют в ядре атома?
-Что происходит с ядром урана, поглотившим лишний электрон?
-Как изменяется температура окружающей среды при делении большого количества ядер урана?
-Расскажите о механизме протекания цепной реакции.
-Что называется критической массой урана?
- Какими факторами определяется возможность протекания цепной реакции?
-Что такое ядерный реактор?
-Что находится в активной зоне реактора?
-Для чего нужны регулирующие стержни? Как ими пользуются?
-Какую вторую функцию (помимо замедления нейтронов) выполняет вода в первом контуре реактора?
-Какие процессы происходят во втором контуре?
-Какие преобразования энергии происходят при получении электрического тока на атомных электростанциях?

Издавна в качестве основных источников энергии использовались дрова, торф, древесный уголь, вода, ветер. С древнейших времён известны такие виды топлива как уголь, нефть, сланцы. Практически всё добываемое топливо сжигается. Много топлива расходуется на тепловых электростанциях, в различных тепловых двигателях, на технологические нужды (например, при выплавке металла, для нагрева заготовок в кузнечных и прокатных цехах) и на отопление жилых помещений и промышленных предприятий. При сжигания топлива образуются продукты сгорания, которые обычно через дымовые трубы выбрасываются в атмосферу. Ежегодно в воздух попадают сотни миллионов тонн различных вредных веществ. Охрана природы стала одной из важнейших задач человечества. Природное топливо крайне медленно восполняется. Существующие запасы образовались десятки и сотни миллионов лет назад. В то же время добыча топлива непрерывно увеличивается. Вот почему важнейшей проблемой энергетики является проблема изыскания новых запасов энергетических ресурсов, в частности ядерной энергии.Издавна в качестве основных источников энергии использовались дрова, торф, древесный уголь, вода, ветер. С древнейших времён известны такие виды топлива как уголь, нефть, сланцы. Практически всё добываемое топливо сжигается. Много топлива расходуется на тепловых электростанциях, в различных тепловых двигателях, на технологические нужды (например, при выплавке металла, для нагрева заготовок в кузнечных и прокатных цехах) и на отопление жилых помещений и промышленных предприятий. При сжигания топлива образуются продукты сгорания, которые обычно через дымовые трубы выбрасываются в атмосферу. Ежегодно в воздух попадают сотни миллионов тонн различных вредных веществ. Охрана природы стала одной из важнейших задач человечества. Природное топливо крайне медленно восполняется. Существующие запасы образовались десятки и сотни миллионов лет назад. В то же время добыча топлива непрерывно увеличивается. Вот почему важнейшей проблемой энергетики является проблема изыскания новых запасов энергетических ресурсов, в частности ядерной энергии.

Датой масштабного начала атомного проекта СССР считается 20 августа 1945 года.Датой масштабного начала атомного проекта СССР считается 20 августа 1945 года.
Однако, работы по освоению атомной энергии в СССР начались много раньше. В 1920-1930-е годы создаются научные центры, школы: физико-технический институт в Ле­нинграде под руководством Иоффе, Харьковский физтех, где работает Лейпунский,.Радиевый институт во главе с Хлопиным, Физический ин­ститут им. П.Н. Лебедева, институт химической физики и другие. При этом упор в развитии науки делается на фундаментальные исследования.
В 1938 году в АН СССР была образована Комиссия по атомному ядру, а в 1940 году - Комиссия по проблемам урана.
Я.Б. Зельдович и Ю.Б. Харитон в 1939-40 годах провели ряд основополагающих расчетов по разветвленной цепной реакции деления урана в реакторе как регулируемой управляемой системе.
Но война прервала эти работы. Тысячи научных сотрудников были призваны в армию, многие известные ученые, имевшие бронь, ушли на фронт добровольцами. Институты и научные центры закрывались, эвакуировались, их работа была прервана и фактически парализована.

28 сентября 1942 года Сталин утверждает распоряжение ГКО № 2352сс «Об организации работ по урану». Немалую роль сыграла разведывательная деятельность, которая позволила нашим ученым быть в курсе научных и технических достиже­ний в области разработки ядерного оружия практически с первого дня. Однако те разработки, которые легли в основу нашего атомного оружия, в дальнейшем были целиком и полностью созданы нашими учеными. На основании распоряжения ГКО от 11 февраля 1943 года ру­ководство Академии наук СССР приняло решение о создании в Москве для проведения работ по урану специальной лаборатории Академии наук СССР. Руководителем всех работ по атомной теме стал Курчатов, который собрал для работы своих петербургских физтеховцев: Зельдовича, Харитона, Кикоина и Флёрова. Под руководством Курчатова в Москве была организована секретная Лаборатория № 2 (будущий Курчатовский ин­ститут).28 сентября 1942 года Сталин утверждает распоряжение ГКО № 2352сс «Об организации работ по урану». Немалую роль сыграла разведывательная деятельность, которая позволила нашим ученым быть в курсе научных и технических достиже­ний в области разработки ядерного оружия практически с первого дня. Однако те разработки, которые легли в основу нашего атомного оружия, в дальнейшем были целиком и полностью созданы нашими учеными. На основании распоряжения ГКО от 11 февраля 1943 года ру­ководство Академии наук СССР приняло решение о создании в Москве для проведения работ по урану специальной лаборатории Академии наук СССР. Руководителем всех работ по атомной теме стал Курчатов, который собрал для работы своих петербургских физтеховцев: Зельдовича, Харитона, Кикоина и Флёрова. Под руководством Курчатова в Москве была организована секретная Лаборатория № 2 (будущий Курчатовский ин­ститут).

Игорь Васильевич Курчатов

В 1946 г. в Лаборатории № 2 был построен первый уран-графитовый ядерный реактор Ф-1, физический пуск которого состоялся в 18 ч. 25 декабря 1946 г. В это время была осуществлена управляемая ядерная реакция при массе урана 45 т, графита – 400 т и наличии в активной зоне реактора одного кадмиевого стержня, введенного на 2,6 м.В 1946 г. в Лаборатории № 2 был построен первый уран-графитовый ядерный реактор Ф-1, физический пуск которого состоялся в 18 ч. 25 декабря 1946 г. В это время была осуществлена управляемая ядерная реакция при массе урана 45 т, графита – 400 т и наличии в активной зоне реактора одного кадмиевого стержня, введенного на 2,6 м.
В июне 1948 г. был осуществлен пуск первого промышленного ядерного реактора, а 19 июня завершился длительный период подготовки реактора к работе на проектной мощности, которая равнялась 100 МВт. С этой датой связывают начало производственной деятельности комбината № 817 в Челябинске-40 (сейчас г.Озерск Челябинской области).
Работы над созданием атомной бомбы длились в течение 2 лет 8 месяцев. 11 августа 1949 г. в КБ-11 была проведена контрольная сборка ядерного заряда из плутония. Заряд был назван РДС-1. Успешное испытание заряда РДС-1 состоялось в 7 часов утра 29 августа 1949 г. на Семипалатинском полигоне

Интенсификация работ по военному и мирному использованию ядерной энергии произошла в период 1950 – 1964 гг. Работы этого этапа связаны с совершенствованием ядерного и разработкой термоядерного оружия, оснащением этими видами оружия вооруженных сил, становлением и развитием атомной электроэнергетики и началом исследований в области мирного использования энергий реакций синтеза легких элементов. Полученный в период 1949 – 1951 гг. научный задел послужил основой дальнейшего совершенствования ядерного оружия, предназначенного для тактической авиации и первых отечественных баллистических ракет. В этот период активизировались работы по созданию первой водородной (термоядерной бомбы). Один из вариантов термоядерной бомбы РДС-6 был разработан А.Д.Сахаровым (1921-1989) и успешно испытан 12 августа 1953 гИнтенсификация работ по военному и мирному использованию ядерной энергии произошла в период 1950 – 1964 гг. Работы этого этапа связаны с совершенствованием ядерного и разработкой термоядерного оружия, оснащением этими видами оружия вооруженных сил, становлением и развитием атомной электроэнергетики и началом исследований в области мирного использования энергий реакций синтеза легких элементов. Полученный в период 1949 – 1951 гг. научный задел послужил основой дальнейшего совершенствования ядерного оружия, предназначенного для тактической авиации и первых отечественных баллистических ракет. В этот период активизировались работы по созданию первой водородной (термоядерной бомбы). Один из вариантов термоядерной бомбы РДС-6 был разработан А.Д.Сахаровым (1921-1989) и успешно испытан 12 августа 1953 г

В 1956 г. был испытан заряд для артиллерийского снаряда.. В 1956 г. был испытан заряд для артиллерийского снаряда.
В 1957 г. были спущены на воду первая атомная подводная лодка и первый атомный ледокол.
В 1960 г. была принята на вооружение первая межконтинентальная баллистическая ракета.
В 1961 г. была испытана самая мощная в мире авиабомба с тротиловым эквивалентом 50 Мт.

Слайд №10

16 мая 1949 г. постановление Правительства определило начало работ по созданию первой атомной электростанции. Научным руководителем работ по созданию первой АЭС был назначен И.В.Курчатов, главным конструктором реактора – Н.А.Доллежаль. 27 июня 1954 г. в России в г. Обнинске была пущена первая в мире атомная электростанция мощностью 5 МВт. В 1955 г. на Сибирском химическом комбинате был пущен новый, более мощный промышленный реактор И-1 с первоначальной мощностью 300 МВт, которая со временем была увеличена в 5 раз.16 мая 1949 г. постановление Правительства определило начало работ по созданию первой атомной электростанции. Научным руководителем работ по созданию первой АЭС был назначен И.В.Курчатов, главным конструктором реактора – Н.А.Доллежаль. 27 июня 1954 г. в России в г. Обнинске была пущена первая в мире атомная электростанция мощностью 5 МВт. В 1955 г. на Сибирском химическом комбинате был пущен новый, более мощный промышленный реактор И-1 с первоначальной мощностью 300 МВт, которая со временем была увеличена в 5 раз.
В 1958 г. был пущен двухконтурный уран-графитовый реактор с замкнутым циклом охлаждения ЭИ-2, который был разработан в Научно-исследовательском и конструкторском институте энерготехники им. Н.А.Доллежаля (НИКИЭТ).

Первая в мире АЭС

Слайд №11

В 1964 г. дали промышленный ток Белоярская и Нововоронежская АЭС. Промышленное развитие водо-графитовых реакторов в электроэнергетике пошло по конструктивной линии РБМК – канальных реакторов большой мощности. Ядерный энергетический реактор РБМК-1000 является гетерогенным канальным реактором на тепловых нейтронах, в котором в качестве топлива используется слабообогащенный по U-235 (2%) диоксид урана, в качестве замедлителя – графит и в качестве теплоносителя – кипящая легкая вода. Разработку РБМК-1000 возглавлял Н.А.Доллежаль. Эти реакторы явились одной из основ ядерной энергетики. Вторым вариантом реакторов был водо-водяной энергетический реактор ВВЭР, работа над проектом которого относится к 1954 г. Идея схемы этого реактора была предложена в РНЦ «Курчатовский институт». ВВЭР – энергетический реактор на тепловых нейтронах. Первый энергоблок с реактором ВВЭР-210 был сдан в эксплуатацию в конце 1964 г. на Нововронежской АЭС.В 1964 г. дали промышленный ток Белоярская и Нововоронежская АЭС. Промышленное развитие водо-графитовых реакторов в электроэнергетике пошло по конструктивной линии РБМК – канальных реакторов большой мощности. Ядерный энергетический реактор РБМК-1000 является гетерогенным канальным реактором на тепловых нейтронах, в котором в качестве топлива используется слабообогащенный по U-235 (2%) диоксид урана, в качестве замедлителя – графит и в качестве теплоносителя – кипящая легкая вода. Разработку РБМК-1000 возглавлял Н.А.Доллежаль. Эти реакторы явились одной из основ ядерной энергетики. Вторым вариантом реакторов был водо-водяной энергетический реактор ВВЭР, работа над проектом которого относится к 1954 г. Идея схемы этого реактора была предложена в РНЦ «Курчатовский институт». ВВЭР – энергетический реактор на тепловых нейтронах. Первый энергоблок с реактором ВВЭР-210 был сдан в эксплуатацию в конце 1964 г. на Нововронежской АЭС.

Белоярская АЭС

Слайд №12

Нововоронежская атомная станция - первая АЭС России с реакторами ВВЭР - расположена в Воронежской области в 40 км к югу
г. Воронежа, на берегу
реки Дон.
С 1964 по 1980 год на станции было сооружено пять энергоблоков с реакторами ВВЭР, каждый из которых являлся головным, т.е. прототипом серийных энергетических реакторов.

Слайд №13

Станция сооружена в четыре очереди: первая очередь - энергоблок № 1 (ВВЭР-210 - в 1964 году), вторая очередь - энергоблок № 2 (ВВЭР-365 - в 1969 году), третья очередь - энергоблоки №№ 3 и 4 (ВВЭР-440, в 1971 и 1972 гг.), четвертая очередь - энергоблок № 5 (ВВЭР-1000,1980 год).
В 1984 году из эксплуатации после 20-летней работы был выведен энергоблок № 1, а в 1990 году - энергоблок № 2. В эксплуатации остаются три энергоблока - общей электрической мощностью 1834 МВт.ВВЭР-1000

Слайд №14

Нововоронежская АЭС полностью обеспечивает потребности Воронежской области в электрической энергии, до 90% - потребности г. Нововоронежа в тепле.
Впервые в Европе на энергоблоках №№ 3 и 4 выполнен уникальный комплекс работ по продлению их сроков эксплуатации на 15 лет и получены соответствующие лицензии Ростехнадзора. Произведены работы по модернизации и продлению срока службы энергоблока № 5.
Со дня пуска в эксплуатацию первого энергоблока (сентябрь 1964 года) Нововоронежской АЭС выработано более 439 млрд. кВт«ч электроэнергии.

Слайд №15

По состоянию на 1985 г. в СССР действовало 15 атомных электростанций: Белоярская, Нововоронежская, Кольская, Билибинская, Ленинградская, Курская, Смоленская, Калининская, Балаковская (РСФСР), Армянская, Чернобыльская, Ровенская, Южно-Украинская, Запорожская, Игналинская (другие республики СССР). В эксплуатации находилось 40 энергоблоков типа РБМК, ВВЭР, ЭГП и один энергоблок с реактором на быстрых нейтронах БН-600 общей мощностью приблизительно 27 млн. кВт. В 1985 г. на атомных электростанциях страны произведено более 170 млрд. кВт*ч, что составляло 11% всей выработки электроэнергии.По состоянию на 1985 г. в СССР действовало 15 атомных электростанций: Белоярская, Нововоронежская, Кольская, Билибинская, Ленинградская, Курская, Смоленская, Калининская, Балаковская (РСФСР), Армянская, Чернобыльская, Ровенская, Южно-Украинская, Запорожская, Игналинская (другие республики СССР). В эксплуатации находилось 40 энергоблоков типа РБМК, ВВЭР, ЭГП и один энергоблок с реактором на быстрых нейтронах БН-600 общей мощностью приблизительно 27 млн. кВт. В 1985 г. на атомных электростанциях страны произведено более 170 млрд. кВт*ч, что составляло 11% всей выработки электроэнергии.

Слайд №16

Эта авария коренным образом изменила ход развития атомной энергетики и привела к снижению темпов ввода новых мощностей в большинстве развитых стран, в том числе и в России.Эта авария коренным образом изменила ход развития атомной энергетики и привела к снижению темпов ввода новых мощностей в большинстве развитых стран, в том числе и в России.
25 апреля в 01 час 23 минуты 49 секунд произошло два мощных взрыва с полным разрушением реакторной установки. Авария на Чернобыльской АЭС стала крупнейшей в истории техническая ядерная аварией.
Загрязнению подверглось более 200000 кв. км, примерно 70% – на территории Белоруссии, России и Украины, остальное на территории Прибалтики, Польши и Скандинавских стран. В результате аварии из сельскохозяйственного оборота было выведено около 5 млн. га земель, вокруг АЭС создана 30-километровая зона отчуждения, уничтожены и захоронены (закопаны тяжёлой техникой) сотни мелких населённых пунктов.

Слайд №17

К 1998 г. положение в отрасли в целом, так же, как в его энергетической и ядерно-оружейной частях, начало стабилизироваться. Стало восстанавливаться доверие населения к атомной энергетике. Уже в 1999 г. атомные электростанции России выработали такое же количество киловатт-часов электроэнергии, которое вырабатывали в 1990 г. АЭС, расположенные на территории бывшего РСФСР.К 1998 г. положение в отрасли в целом, так же, как в его энергетической и ядерно-оружейной частях, начало стабилизироваться. Стало восстанавливаться доверие населения к атомной энергетике. Уже в 1999 г. атомные электростанции России выработали такое же количество киловатт-часов электроэнергии, которое вырабатывали в 1990 г. АЭС, расположенные на территории бывшего РСФСР.
В ядерно-оружейном комплексе, начиная с 1998 г., реализовывалась Федеральная целевая программа «Развитие ядерного оружейного комплекса на период 2003 г.», а с 2006 г. действует вторая целевая программа «Развитие ЯОК на период 2006-2009 и на перспективу 2010-2015 гг.».

Слайд №18

В отношении мирного использования атомной энергии в феврале 2010 г. была принята федеральная целевая программа «Ядерные энерготехнологии нового поколения на период 2010-2015 гг. и на перспективу до 2020 г.» Основной целью программы является разработка ядерных энерготехнологий нового поколения для атомных электростанций, обеспечивающих потребности страны в энергоресурсах и повышение эффективности использования природного урана и отработавшего ядерного топлива, а также исследование новых способов использования энергии атомного ядра.В отношении мирного использования атомной энергии в феврале 2010 г. была принята федеральная целевая программа «Ядерные энерготехнологии нового поколения на период 2010-2015 гг. и на перспективу до 2020 г.» Основной целью программы является разработка ядерных энерготехнологий нового поколения для атомных электростанций, обеспечивающих потребности страны в энергоресурсах и повышение эффективности использования природного урана и отработавшего ядерного топлива, а также исследование новых способов использования энергии атомного ядра.

Слайд №19

Важным направлением развития малой атомной энергетики являются плавучие АЭС. Проект атомной теплоэлектростанции (АТЭС) малой мощности на базе плавучего энергоблока (ПЭБ) с двумя реакторными установками КЛТ-40С начал разрабатываться в 1994 г. Плавучая АТЭС обладает рядом преимуществ: возможность работы в условиях вечной мерзлоты на территории за Полярным кругом. ПЭБ рассчитан на любую аварию, проект плавучей АЭС соответствует всем современным требованиям безопасности, а также полностью решает проблему ядерной безопасности для сейсмически активных районов. В июне 2010 г. был осуществлен пуск на воду первого в мире плавучего энергоблока «Академик Ломоносов», который после дополнительных испытаний отправлен к месту базирования на Камчатку.Важным направлением развития малой атомной энергетики являются плавучие АЭС. Проект атомной теплоэлектростанции (АТЭС) малой мощности на базе плавучего энергоблока (ПЭБ) с двумя реакторными установками КЛТ-40С начал разрабатываться в 1994 г. Плавучая АТЭС обладает рядом преимуществ: возможность работы в условиях вечной мерзлоты на территории за Полярным кругом. ПЭБ рассчитан на любую аварию, проект плавучей АЭС соответствует всем современным требованиям безопасности, а также полностью решает проблему ядерной безопасности для сейсмически активных районов. В июне 2010 г. был осуществлен пуск на воду первого в мире плавучего энергоблока «Академик Ломоносов», который после дополнительных испытаний отправлен к месту базирования на Камчатку.

Слайд №20

обеспечение стратегического ядерного паритета, выполнение государственного оборонного заказа, сохранение и развитие ядерного оружейного комплекса;
проведение научных исследований в области ядерной физики, ядерной и термоядерной энергетики, специального материаловедения и передовых технологий;
развитие атомной энергетики, в том числе обеспечение сырьевой базы, топливного цикла, атомного машино- и приборостроения, строительство отечественных и зарубежных АЭС.

Слайд 2

Атомная энергетика

§66. Деление ядер урана. §67. Цепная реакция. §68. Ядерный реактор. §69. Атомная энергетика. §70. Биологическое действие радиации. §71. Получение и применение радиоактивных изотопов. §72. Термоядерная реакция. §73. Элементарные частицы. Античастицы.

Слайд 3

§66. Деление ядер урана

Кто и когда открыл деление ядер урана? Каков механизм деления ядра? Какие силы действуют в ядре? Что происходит при делении ядра? Что происходит с энергией при делении ядра урана? Как изменяется температура окружающей среды при делении ядер урана? Как велика выделенная энергия?

Слайд 4

Деление тяжелых ядер.

В отличие от радиоактивного распада ядер, сопровождающегося испусканием α- или β-частиц, реакции деления – это процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс. В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деление ядер урана. Продолжая исследования, начатые Ферми, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) и др. Уран встречается в природе в виде двух изотопов: урана-238 и урана-235 (99,3 %) и (0,7 %). При бомбардировке нейтронами ядра обоих изотопов могут расщепляться на два осколка. При этом реакция деления урана-235 наиболее интенсивно идет на медленных (тепловых) нейтронах, в то время как ядра урана-238 вступают в реакцию деления только с быстрыми нейтронами с энергией порядка 1 МэВ.

Слайд 5

Цепная реакция

Основной интерес для ядерной энергетики представляет реакция деления ядра урана-235. В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра. Две типичные реакции деления этого ядра имеют вид: Обратите внимание, что в результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. Продуктами деления ядер урана-235 могут быть и другие изотопы бария, ксенона, стронция, рубидия и т. д.

Слайд 6

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией

Схема развития цепной реакции деления ядер урана представлена на рисунке

Слайд 7

Коэффициент размножения

Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %.

Слайд 8

Критическая масса

Наименьшая масса урана, при которой возможно протекание цепной реакции, называется критической массой. Способы уменьшения потери нейтронов: Использование отражающей оболочки (из бериллия), Уменьшение количества примесей, Применение замедлителя нейтронов (графит, тяжелая вода), Для урана-235 - M кр = 50 кг(r=9 см).

Слайд 9

Схема ядерного реактора

  • Слайд 10

    В активной зоне ядерного реактора идет управляемая ядерная реакцияс выделением большого количество энергии.

    Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми.В нашей стране первый реактор был построен в 1946 году под руководством И. В. Курчатова

    Слайд 11

    Домашнее задание

    §66. Деление ядер урана. §67. Цепная реакция. §68. Ядерный реактор. Ответить на вопросы. Нарисовать схему реактора. Какие вещества и как применяются в ядерном реакторе? (письменно)

    Слайд 12

    Термоядерные реакции.

    Реакции слияния легких ядер носят название термоядерных реакций, так как они могут протекать только при очень высоких температурах.

    Слайд 13

    Второй путь освобождения ядерной энергии связан с реакциями синтеза. При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Особенно большое практическое значение имеет то, что при термоядерной реакции на каждый нуклон выделяется намного больше энергии, чем при ядерной реакции, например, при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ,а при делении ядра урана на один нуклон приходится »0,9 МэВ.

    Слайд 14

    Условия протекания термоядерной реакции

    Чтобы два ядра вступили в реакцию синтеза, они должны сблизится на расстояние действия ядерных сил порядка 2·10–15 м, преодолев электрическое отталкивание их положительных зарядов. Для этого средняя кинетическая энергия теплового движения молекул должна превосходить потенциальную энергию кулоновского взаимодействия. Расчет необходимой для этого температуры T приводит к величине порядка 108–109 К. Это чрезвычайно высокая температура. При такой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой.

    Слайд 15

    Управляемая термоядерная реакция

    Энергетически выгодная реакция. Однако она может идти лишь при очень высоких температурах (порядка несколько сотен млн. градусов). При большой плотности вещества такая температура может быть достигнута путем создания в плазме мощных электронных разрядов. При этом возникает проблема - трудно удержать плазму. Самоподдерживающиеся термоядерные реакции происходят в звездах

    Слайд 16

    Энергетический кризис

    стал реальной угрозой для человечества. В связи с этим ученые предложили добывать изотоп тяжелого водорода - дейтерий - из морской воды и подвергать реакции ядерного расплава при температурах около 100 миллионов градусов Цельсия. При ядерном расплаве дейтерий, полученный из одного килограмма морской воды будет способен произвести столько же энергии, сколько выделяется при сжигании 300 литров бензина ___ ТОКАМАК (тороидальная магнитная камера с током)

    Слайд 17

    Наиболее мощный современный ТОКАМАК, служащий только лишь для исследовательских целей, находится в городе Абингдон недалеко от Оксфорда. Высотой в 10 метров, он вырабатывает плазму и сохраняет ей жизнь пока всего лишь около 1 секунды.

    Слайд 18

    ТОКАМАК (ТОроидальнаяКАмера с МАгнитными Катушками)

    это электрофизическое устройство, основное назначение которого – формирование плазмы. Плазма удерживается не стенками камеры, которые не способны выдержать её температуру, а специально создаваемым магнитным полем, что возможно при температурах около 100 млн. градусов, и сохранение её достаточно долгое время в заданном объеме. Возможность получения плазмы при сверхвысоких температурах позволяет осуществить термоядерную реакцию синтеза ядер гелия из исходного сырья, изотопов водорода (дейтерия итрития

  • © 2024 sun-breeze.ru
    Новые идеи бизнеса - Животные и растения. Заработок в интернете. Автобизнес