Машинки для заточки электродов контактной сварки. Вольфрамовые электроды

СОЮЗ СОВЕТСКИХСОЦИАЛИСТИЧЕСКИХРЕСПУБЛИК 1)5 В 23 К 11/10 ИСАНИЕ ИЗОБРЕТ 4ь ".,".,.;.;,: 1 рудования для контактнои точечнои сварки. Цель изобретения - упрощение конструкции и повышение чистоты обработанной поверхности, На обоих торцах инструмента 1 расположены параллельно друг другу зубья 7, Каждый из зубьев 7 выполнен с двумя режущими кромками 8 и опорной поверхно-., стью 5 между ними, Устройство зажимают между электродами 4 усилием, развиваемым приводом машины для контактной сварки. При вращении устройства режущие кромки 8 срезают слой металла, а опорные поверхности 5 выглаживают обрабатываемый участок по всему рабочему торцу электрода. 4 ил,ек- ноКТмо- боГОСУДАРСТВЕННЫЙ КОМИТЕТПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМПРИ ГКНТ СССР АВТОРСКОМУ СВИДЕТЕЛЬС(56) Авторское свидетельство СССРМ 490579, кл. В 23 В 29/14, 1974.Слиозберг С.КЧулошников П.ЛЭтроды для контактной сварки, Л.; Машстроение, 1972, с. 79, рис. 44 а,(54) УСТРОЙСТВО ДЛЯ ЗАТОЧКИ ЭЛРОДОВ МАШИН ДЛЯ КОНТАКТНОЙЧЕЧНОЙ СВАРКИ(57) Изобретение относится к сварке ижет быть использовано при разработке 1595635 А 1Изобретение относится к сварке и может быть использовано при разработке оборудования для контактной точечной сварки.Цель изобретения - упрощение конструкции и повышение чистоты обработанной поверхности.На фиг. 1 схематично изображено устройство для заточки сферической рабочей поверхности эелктрода, осевое сечение; на фиг. 2 - то же, вид сверху; на фиг, 3 - устройство для заточки плоскоконических и плоскоконических с выступом рабочих поверхностей электрода, пример выполнения; на фиг, 4 - то же, вид сверху.Устройство для заточки электрода состоит из инструмента 1, установленного в обойме 2 с ручкой 3 (фиг, 2), или ручка 3 закреплена непосредственно на самом инструменте 1 (фиг. 4), В инструменте 1 на обоих торцах выполнено углубление, задающее профиль обрабатываемой поверхности электрода 4 и образующее опорную поверхность 5. На торцах инструмента 1 выполнены канавки б, образующие на опорной поверхности параллельные зубья 7 с двумя режущими кромками 8,У инструмента 1, предназначенного для обработки электродов с рабочей поверхностью плоскоконической или плоскоконической с выступом формы (фиг. 3 и 4), канавки б размещены симметрично относительно продольной оси и на торцах выполнены центрирующие глухие отверстия 9.Заточку электродов осуществляют следующим образом.. Устройство зажимают между электродами 4, установленными в электрододержателях сварочной машины, усилием сварки, при этом электроды опираются на опорные поверхности 5 на зубьях 7 инструмента 1. Устройство центрируется по электродам, Одновременно участки опорной поверхности 5, воспринимая усилие от электродов,сминают выступы на поверхностях и упругодеформируют материал электродов. Привращении устройства рукояткой 3 вокругэлектродов кромки 8 срезают слой металла,5 Обрабатываемая поверхность электродовпо всей длине режущей кромки плотно прилегает к участкам 5 опорной поверхности;так как режущая кромка является частьюопорной поверхности, Скользящие по элек 10 тродам под нагрузкой участки опорной поверхности 5 выглаживают обрабатываемыйучасток по всему торцу зуба 7, тем достигается высокая чистота обработанной поверхности, При расположении режущей кромки15 точно по оси инструмента 1 обрабатываетсяи выглаживается вся поверхность торцаэлектрода.Обработка электродов плоскоконической формы с выступом продолжается до20 тех пор, пока цилиндрический выступ наторце не достигнет дна цилиндоического отверстия 9,Предлагаемое устройство для заточкиэлектродов позволяет обрабатывать рабо 25 чие поверхности электродов без переналадки машины по усилию. При этом достигаетсявысокая чистота и точность обработки. Простота конструкции устройства обеспечиваетнизкую стоимость изготовления при приме 30 нении серийного оборудования,Формула изобретенияУстройство для заточки электродов машин для контактной точечной сварки, снабженное зубьями и канавками между ними,35 предназначенными для удаления стружки,о т л и ч а ю щ е е с я тем, что, с цельюупрощения конструкции и повышения чистоты обработанной поверхности, зубья расположены параллельно друг другу, а каждый40 из зубьев выполнен с двумя режущимикромками и опорной поверхностью междуними для выглаживания рабочей поверхности электрода.1595635 оставитель А. Антошехред М,Моргентал орректор Н.Ревска опча актор Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101 Заказ 2876 Тираж 645 Подписное ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-З 5, Раушская наб., 4/5

Заявка

4440071, 03.05.1988

ПРЕДПРИЯТИЕ ПЯ Г-4086

КРАСНОВ ФЕЛИКС ИВАНОВИЧ

МПК / Метки

Код ссылки

Устройство для заточки электродов машин для контактной точечной сварки

Похожие патенты

Движения.Во время обратного хода в контакт вступает, правая поверхность верхнего плеча двуплечего рычага 8 и левая поверхность соседнего зуба рейки 5. Направление действия возникающей при этом силы реакции зуба рейки 5 на рычаг 8 меняется на противоположное, Так как в этом направлении ничто не препятствует переме 119953Изобретение относится к области - .сварки, в частности к устройствамдля заточки микросварочных электродов, и может найти применение в приборостроительной и радиотехническойпромышленности.Цель изобретения - повышение качества заточки.Поставленная цель достигаетсяза счет применения подвижного абразивного инструмента.На фиг. 1 представлен заточник,общий вид; на фиг. 2 - траекториядвижения затачиваемого торца элект, рода...

Участок торца соединит обе стороны стержня.1. После этого стержень 1 устанавливают перпендикулярно ситалловой пластине 2 и шлифуют на некоторую величину 11, определяемую из соотношениягде и. - угол начальной заточки торца;Д в.линейный размер " орда необходимый для свагки КОНКРетного материала,Размер д увеличивается при увеличении толщины свариваемых деталей 111 - высота участка торца, которую необходимо сошлифовать,чтобы получить требуемый размер торца).1)ри увеличении угла Ю, для получения размера торца О размер 1 увеличивается.уотройство заточки, кроме электрода 1 и ситалловой пластины 2, содеркит корпус 3, закрепленный на рукоятке 4 с помсщью упора 5 и гайки б. На корпусе 3 закреплен винтовой упор 7, предназначенный для...

На затачиваемом инструменте образуется зона среза металла 12, на которой параллельно горизонтальной оси корпуса для безопасности расположены оси ручек 13, выполненных из любого прочного, легкого материала, служащих для меньшего приложения усилия на ручки в процессе заточки.Ручной инструмент для заточки режущих кромок работает следующим образом.При заточке режугцих кромок инструментов с клинообразной формой лезвия (коса, топор и т.д.) в полевых условиях затачиваемый инстумент 3 носком упирают в любой твердый предмет или в грунт. Ручной инструмент берут за ручки 13 и угловыми 5 10 15 20 25 30 35 вырезами 2 направляют в зону среза ме. талла 12, Гайкой-барашком 9 регулирующий винтосвобождается от фиксации и устанавливается сферической...

Конструкция электродов должна иметь форму и размеры, обеспечивающие доступ рабочей части электрода к месту сварки деталей, быть приспособленной для удобной и надежной установки на машине и иметь высокую стойкость рабочей поверхности.

Наиболее простыми для изготовления и эксплуатации являются прямые электроды, выполняемые в соответствии с ГОСТом 14111-69 из различных медных электродных сплавов, в зависимости от марки металла свариваемых деталей.

Иногда, например при сварке разноименных металлов или деталей с большой разницей в толщине, для получения качественных соединений электроды должны иметь достаточно низкую электротеплопроводность (30…40% от меди). Если из такого металла изготавливать весь электрод, то он будет интенсивно нагреваться от сварочного тока за счет своего высокого электросопротивления. В таких случаях основание электрода выполняют из медного сплава, а рабочую часть из металла со свойствами, необходимыми для нормального формирования соединений. Рабочая часть 3 может быть сменной (рис. 1, а) и закрепляться с помощью гайки 2 на основании 1. Использование электродов такой конструкции удобно, так как позволяет при изменении толщины и марки металла свариваемых деталей устанавливать нужную рабочую часть. Недостатками электрода со сменной частью являются возможность применения его только при сварке деталей с хорошими подходами и недостаточно интенсивное охлаждение. Поэтому подобные электроды не следует использовать на тяжелых режимах сварки с большим темпом.

Рис. 1 . Электроды с рабочей частью из другого металла

Рабочую часть электродов выполняют также в виде припаянного (рис. 1, б) или запрессованного наконечника (рис. 1, в). Наконечники изготавливают из вольфрама, молибдена или их композиций с медью. При запрессовке наконечника из вольфрама необходима шлифовка его цилиндрической поверхности с целью надежного контакта с основанием электрода. При сварке деталей из нержавеющих сталей толщиной 0,8…1,5 мм диаметр вольфрамовой вставки 3 (рис. 1, в) составляет 4…7 мм, глубина запрессованной части 10…12 мм, а выступающей части 1,5…2 мм. При большей длине выступающей части наблюдаются перегрев и снижение стойкости электрода. Рабочая поверхность вставки может быть плоской или сферической.

Особое внимание при конструировании электродов должно уделяться форме и размерам посадочной части. Наиболее распространена конусная посадочная часть, длина которой должна составлять не менее . Электроды с укороченным конусом следует применять только при сварке с использованием малых усилий и токов. Кроме конусной посадки иногда применяется крепление электродов на резьбе с помощью накидной гайки. Такое соединение электродов может быть рекомендовано в. многоточечных машинах, когда важно иметь одинаковое исходное расстояние между электродами, или в клещах. При использовании фигурных электрододержателей применяются также электроды с цилиндрической посадочной частью (см. рис. 8, г).

При точечной сварке деталей сложного контура и плохими подходами к месту соединения используют самые разнообразные фигурные электроды, которые имеют более сложную конструкцию чем прямые, менее удобны в эксплуатации и, как правило, обладают пониженной стойкостью. Поэтому фигурные электроды целесообразно применять тогда, когда без них сварка вообще неосуществима. Размеры и форма фигурных электродов зависят от размеров и конфигурации деталей, а также конструкции электрододержателей и консолей сварочной машины (рис. 2).


Рис. 2. Различные типы фигурных электродов

Фигурные электроды при работе обычно испытывают значительный изгибающий момент от внеосевого приложения усилия, который необходимо учитывать при выборе или конструировании электродов. Изгибающий момент и обычно малое сечение консольной части создают значительные упругие деформации. В связи с этим неизбежно взаимное смещение рабочих поверхностей электродов, особенно, если один электрод прямой, а другой фигурный. Поэтому у фигурных электродов предпочтительной является сферическая форма рабочей поверхности. В случае фигурных электродов, испытывающих большие изгибающие моменты, возможна деформация конусной посадочной части и гнезда электрододержателя. Предельно допустимые изгибающие моменты для фигурных электродов из бронзы Бр.НБТ и электрододержателей из термообработанной бронзы Бр.Х составляют по опытным данным для конусов электродов диаметром 16, 20, 25 мм соответственно 750, 1500 и 3200 кг × см. Если конусная часть фигурного электрода испытывает момент больше допустимого, то следует увеличить максимальный диаметр конуса.

При конструировании сложных пространственных фигурных электродов рекомендуется предварительное изготовление их модели из пластилина, дерева или легко обрабатываемого металла. Это позволяет установить наиболее рациональные размеры и форму фигурного электрода и избежать переделок при его изготовлении сразу из металла.

На рис. 3 приведены некоторые примеры сварки узлов в местах с ограниченным доступом. Сварку профиля с обечайкой выполняют нижним электродом со смещенной рабочей поверхностью (рис. 3, а).


Рис. 3. Примеры применения фигурных электродов

Пример использования верхнего электрода с косой заточкой и нижнего, фигурного, показан на рис. 3, б. Угол отклонения электрододержателя от вертикальной оси не должен быть более 30°, в противном случае конусное отверстие электрододержателя деформируется. Если нельзя установить верхний электрод с наклоном, то он также может быть фигурным. Фигурный электрод изгибают в двух, плоскостях для достижения труднодоступного места сварки (рис. 3, в-д). Если на машине отсутствует или ограничено горизонтальное перемещение консолей для сварки деталей, показанных на рис. 3, е применяют два фигурных электрода с одинаковыми вылетами.

Иногда фигурные электроды воспринимают очень большие изгибающие моменты. Во избежание деформации конусной посадочной части фигурный электрод дополнительно закрепляют за наружную поверхность электрододержателя с помощью хомутика и винта (рис. 4, а). Прочность фигурных электродов с большим вылетом значительно увеличивается, если выполнять их составными (армированными). Для этого основная часть электрода делается из стали, а токоведущая из медного сплава (рис. 4, б). Соединение токоведущих частей между собой может быть выполнено с помощью пайки, а со стальной консолью - на винтах. Возможен вариант конструкции, когда фигурный электрод из медного сплава подкрепляют (армируют) стальными элементами (планками), которые не должны образовывать вокруг электрода замкнутого кольца, так как в нем будут индуктироваться токи, увеличивающие нагрев электрода. Крепление фигурных электродов, испытывающих большие моменты, целесообразно выполнять в виде удлиненной цилиндрической части, для установки в машине вместо электрододержателя (см. рис. 4, б).

Рис. 4. Электроды, воспринимающие большой изгибающий момент:

а - с подкреплением за наружную поверхность электрододержателя;

б - армированный электрод: 1 - стальная консоль; 2 - электрод; 3 - токоподвод

В большинстве случаев при точечной сварке используется внутреннее охлаждение электродов. Однако, если сварка выполняется электродами малого сечения или с большим нагревом, а свариваемый материал не подвержен коррозии, в клещах применяют наружное охлаждение. Подвод охлаждающей воды осуществляется либо специальными трубками, либо через отверстия в рабочей части самого электрода. Большие трудности возникают при охлаждении фигурных электродов, так как подвести воду непосредственно к рабочей части не всегда возможно из-за малого сечения консольной части электрода. Иногда охлаждение выполняют с помощью тонких медных трубок, припаиваемых к боковым поверхностям консольной части фигурного электрода достаточно большого размера. Учитывая, что фигурные электроды всегда охлаждаются хуже прямых электродов, часто приходится существенно снижать темп сварки, не допуская перегрева рабочей части фигурного электрода и снижения стойкости.

При использовании для сварки в труднодоступных местах клещей, а также необходимости частой замены электродов применяют крепление электродов, показанное на рис. 5. Такое крепление обеспечивает хороший электрический контакт, удобное регулирование вылета электродов, хорошую устойчивость против боковых смещений, быстрый и простой съем электродов. Однако из-за отсутствия внутреннего охлаждения в таких электродах их применяют при сварке на малых токах (до 5…6 кА) и с малым темпом.

Рис. 5. Способы крепления электродов

Для удобства работы используют электроды, имеющие несколько рабочих частей. Эти электроды могут быть переставными или поворотными (рис. 6) и значительно упрощают и ускоряют установку электродов (совмещение рабочих поверхностей).


Рис. 6. Многопозиционные переставной (а) и поверхностный (б) электроды:

1 - электрододержатель; 2 - электрод

Электроды устанавливаются в электрододержателях, которые закрепляются на консольных частях сварочной машины, передающих усилие сжатия и ток. В табл. для справок приведены размеры прямых электрододержателей основных типов точечных сварочных машин. Электрододержатели должны изготавливаться из достаточно прочных медных сплавов с относительно высокой электропроводностью. Чаще всего электрододержатели выполняют из бронзы Бр.Х, которая должна быть термически обработана для получения необходимой твердости (НВ не менее 110). В случае сварки сталей, когда применяются небольшие токи (5…10 кА), электрододержатели целесообразно выполнять из бронзы Бр.НБТ или кремненикелевой бронзы. Эти металлы обеспечивают длительное сохранение размеров конусного посадочного отверстия электрододержателя.

Таблица. Размеры электрододержателей точечных машин в мм

Размеры электрододержателя

МТПТ-600

МТПТ-400, МТК-75

МТП-300,

МТП-400

МТК 6301, МТП-200/1200

МТПУ-300, МТП-150/1200 МТП-200, МТП-150, МТ 2507

МТ 1607, МТП-75 МТП-100, МТПР-75 (50 , 25) МТПК-25, МТ 1206

Наружный диаметр

Диаметр конуса для электрода

Конусность

1: 10

1:10

1:10

Наибольшее распространение имеют прямые электрододержатели (рис. 7). Внутри полости электрододержателя проходит трубка для подвода воды, сечение которой должно быть достаточно для интенсивного охлаждения электрода. При толщине стенки трубки 0,5…0,8 мм ее наружный диаметр должен составлять 0,7…0,75 от диаметра отверстия электрода . В случае частой смены электродов целесообразно использовать электрододержатели с выталкивателями (рис. 7, б). Выталкивание электрода из посадочного гнезда производится при ударе деревянным молотком по бойку 5, который соединен с трубкой из нержавеющей стали - выталкивателем 1. Возврат выталкивателя и бойка в исходное нижнее положение выполняется пружиной 2. Важно, чтобы торец выталкивателя, ударяющий по торцу электрода, не имел повреждений на своей поверхности, в противном случае посадочная часть электрода будет быстро выходить из строя, заклиниваясь при его удалении из электрододержателя. Удобным для эксплуатации является выполнение конца электрододержателя 1 в виде сменной резьбовой втулки 2, в которой установлен электрод 3 (рис. 7, в). Такая конструкция позволяет изготавливать втулку 2 из более стойкого металла и заменять ее при износе и установке электрода другого диаметра, а также легко удалять электрод при заклинивании путем выбивания его стальной выколоткой изнутри втулки.


Рис. 7. Прямые электрододержатели:

а – нормальный;

б – с выталкивателем;

в – со сменной втулкой

Если фигурные электроды чаще применяются при сварке деталей, имеющих малые размеры соединяемых элементов, то при больших их размерах целесообразно использование специальных фигурных электрододержателей и простых электродов, Фигурные электрододержатели могут быть составными и обеспечивать установку электродов под различным, углом к вертикальной оси (рис. 8, а). Достоинством такого электрододержателя является легкая регулировка вылета электрода. В ряде случаев фигурный электрод может быть заменен электрододержателей, показанным на рис. 8, б. Интерес также представляет электрододержатель, наклон которого можно легко регулировать (рис. 8, в). Конструкция, изогнутого под углом 90° электрододержателя приведена на рис. 30, г, она позволяет закрепить электроды с цилиндрической посадочной частью. Специальный винтовой зажим обеспечивает быстрое закрепление и снятие электродов. На рис. 9 представлены различные примеры точечной сварки с использованием фигурных электрододержателей.

Рис. 8. Специальные электрододержатели

Рис. 9. Примеры применения различных электрододержателей

При точечной сварке крупногабаритных узлов типа панелей целесообразно использовать четырехэлектродную поворотную головку (рис. 10). Применение таких головок позволяет в четыре раза увеличить время работы электродов до очередной зачистки, не удаляя свариваемую панель из рабочего пространства машины. Для этого после загрязнения каждой пары электродов электрододержатель 1 поворачивается на 90° и закрепляется стопором 4. Поворотная головка позволяет также устанавливать электроды с различной формой рабочей поверхности для сварки узла с изменяющейся, например, ступенчато толщиной деталей, а также обеспечить механизацию зачистки электродов специальными устройствами. Поворотная головка может использоваться при точечной сварке деталей с большой разницей в толщине и устанавливается со стороны тонкой детали. Известно, что при этом рабочая поверхность электрода, контактирующего с тонкой деталью, быстро изнашивается и заменяется приповороте головки на новую. В качестве электрода со стороны толстой детали удобно использовать ролик.

Рис. 10. Поворотная электродная головка:

1 – поворотный электрододержатель; 2 – корпус; 3 – электрод; 4 – стопор

При точечной сварке оси электродов должны быть перпендикулярны поверхностям свариваемых деталей. Для этого сварку деталей, имеющих уклоны (плавно изменяющуюся толщину), или изготовляемых с помощью подвесных машин, при наличии крупногабаритных узлов выполняют с использованием самоустанавливающегося поворотного электрода со сферической опорой (рис. 11, а). Во избежание течи воды электрод имеет уплотнение в виде резинового кольца.

Рис. 11. Самоустанавливающиеся электроды и головки:

а - поворотный электрод с плоской рабочей поверхностью;

б - головка для двухточечной сварки: 1 - корпус; 2 - ось;

в - пластинчатый электрод для сварки сетки: 1, 7 - консоли машины; 2-вилка; 3 - гибкие шины; 4-качающийся электрод; 5 - свариваемая сетка; 6 - нижний электрод

На обычных точечных машинах сварка стальных деталей относительно небольшой толщины может выполняться сразу двумя точками с применением двухэлектродной головки (рис. 11, б). Равномерное распределение усилий на оба электрода достигается за счет поворота корпуса 1 относительно оси 2 под действием усилия сжатия машины.

Для сварки сетки из стальной проволоки диаметром 3…5 мм могут быть применены пластинчатые электроды (рис. 11, в). Верхний электрод 4 качается на оси для равномерного распределения усилий между соединениями. Подвод тока в целях его равномерности производится гибкими шинами 3; вилка 2 и ось качания изолированы от электрода. При длине электродов до 150 мм они могут выполняться некачающимися.

Рис. 12. Раздвижные клиновые электроды-вставки

При сварке панелей, состоящих из двух обшивок и ребер жесткости, внутри должна находиться электропроводная вставка, воспринимающая усилие электродов машины. Конструкция вставки должна обеспечивать ее плотное прилегание к внутренней поверхности свариваемых деталей без зазора, во избежание глубоких вмятин на внешних поверхностях деталей и возможных прожогов. Для этой цели может быть использована раздвижная вставка, показанная на рис. 12. Движение клина 2 относительно неподвижного клина 4, обеспечивающее их поджатие к свариваемым деталям 3, синхронизировано с работой машины. Когда электроды 1 и 5 сжаты и происходит сварка, воздух из пневмосистемы привода машины поступает в правую полость цилиндра 8, закрепленного на передней стенке машины и через тягу 7 перемещает клин 2, увеличивая расстояние между рабочими поверхностями клиньев. При поднятии электрода 1 воздух выходит из правой и начинает поступать в левую полость цилиндра 8, уменьшая расстояние между поверхностями клиньев, что позволяет перемещать свариваемую панель относительно электродов машины. Охлаждение клиновой вставки производится воздухом, который поступает по трубке 6. Использование такой вставки позволяет сваривать детали с внутренним расстоянием между ними до 10 мм.

Конструкция электродов должна иметь форму и размеры, обеспечивающие доступ рабочей части электрода к месту сварки деталей, быть приспособленной для удобной и надежной установки на машине и иметь высокую стойкость рабочей поверхности.

Наиболее простыми для изготовления и эксплуатации являются прямые электроды, выполняемые в соответствии с ГОСТом 14111-69 из различных медных электродных сплавов, в зависимости от марки металла свариваемых деталей.

Иногда, например при сварке разноименных металлов или деталей с большой разницей в толщине, для получения качественных соединений электроды должны иметь достаточно низкую электротеплопроводность (30…40% от меди). Если из такого металла изготавливать весь электрод, то он будет интенсивно нагреваться от сварочного тока за счет своего высокого электросопротивления. В таких случаях основание электрода выполняют из медного сплава, а рабочую часть из металла со свойствами, необходимыми для нормального формирования соединений. Рабочая часть 3 может быть сменной (рис. 1, а) и закрепляться с помощью гайки 2 на основании 1. Использование электродов такой конструкции удобно, так как позволяет при изменении толщины и марки металла свариваемых деталей устанавливать нужную рабочую часть. Недостатками электрода со сменной частью являются возможность применения его только при сварке деталей с хорошими подходами и недостаточно интенсивное охлаждение. Поэтому подобные электроды не следует использовать на тяжелых режимах сварки с большим темпом.

Рис. 1. Электроды с рабочей частью из другого металла

Рабочую часть электродов выполняют также в виде припаянного (рис. 1, б) или запрессованного наконечника (рис. 1, в). Наконечники изготавливают из вольфрама, молибдена или их композиций с медью. При запрессовке наконечника из вольфрама необходима шлифовка его цилиндрической поверхности с целью надежного контакта с основанием электрода. При сварке деталей из нержавеющих сталей толщиной 0,8…1,5 мм диаметр вольфрамовой вставки 3 (рис. 1, в) составляет 4…7 мм, глубина запрессованной части 10…12 мм, а выступающей части 1,5…2 мм. При большей длине выступающей части наблюдаются перегрев и снижение стойкости электрода. Рабочая поверхность вставки может быть плоской или сферической.

Особое внимание при конструировании электродов должно уделяться форме и размерам посадочной части. Наиболее распространена конусная посадочная часть, длина которой должна составлять не менее. Электроды с укороченным конусом следует применять только при сварке с использованием малых усилий и токов. Кроме конусной посадки иногда применяется крепление электродов на резьбе с помощью накидной гайки. Такое соединение электродов может быть рекомендовано в. многоточечных машинах, когда важно иметь одинаковое исходное расстояние между электродами, или в клещах. При использовании фигурных электрододержателей применяются также электроды с цилиндрической посадочной частью (см. рис. 8, г).

При точечной сварке деталей сложного контура и плохими подходами к месту соединения используют самые разнообразные фигурные электроды, которые имеют более сложную конструкцию чем прямые, менее удобны в эксплуатации и, как правило, обладают пониженной стойкостью. Поэтому фигурные электроды целесообразно применять тогда, когда без них сварка вообще неосуществима. Размеры и форма фигурных электродов зависят от размеров и конфигурации деталей, а также конструкции электрододержателей и консолей сварочной машины (рис. 2).

Рис. 2. Различные типы фигурных электродов

Фигурные электроды при работе обычно испытывают значительный изгибающий момент от внеосевого приложения усилия, который необходимо учитывать при выборе или конструировании электродов. Изгибающий момент и обычно малое сечение консольной части создают значительные упругие деформации. В связи с этим неизбежно взаимное смещение рабочих поверхностей электродов, особенно, если один электрод прямой, а другой фигурный. Поэтому у фигурных электродов предпочтительной является сферическая форма рабочей поверхности. В случае фигурных электродов, испытывающих большие изгибающие моменты, возможна деформация конусной посадочной части и гнезда электрододержателя. Предельно допустимые изгибающие моменты для фигурных электродов из бронзы Бр.НБТ и электрододержателей из термообработанной бронзы Бр.Х составляют по опытным данным для конусов электродов диаметром 16, 20, 25 мм соответственно 750, 1500 и 3200 кг×см. Если конусная часть фигурного электрода испытывает момент больше допустимого, то следует увеличить максимальный диаметр конуса.

При конструировании сложных пространственных фигурных электродов рекомендуется предварительное изготовление их модели из пластилина, дерева или легко обрабатываемого металла. Это позволяет установить наиболее рациональные размеры и форму фигурного электрода и избежать переделок при его изготовлении сразу из металла.

На рис. 3 приведены некоторые примеры сварки узлов в местах с ограниченным доступом. Сварку профиля с обечайкой выполняют нижним электродом со смещенной рабочей поверхностью (рис. 3, а).

Рис. 3. Примеры применения фигурных электродов

Пример использования верхнего электрода с косой заточкой и нижнего, фигурного, показан на рис. 3, б. Угол отклонения электрододержателя от вертикальной оси не должен быть более 30°, в противном случае конусное отверстие электрододержателя деформируется. Если нельзя установить верхний электрод с наклоном, то он также может быть фигурным. Фигурный электрод изгибают в двух, плоскостях для достижения труднодоступного места сварки (рис. 3, в-д). Если на машине отсутствует или ограничено горизонтальное перемещение консолей для сварки деталей, показанных на рис. 3, е применяют два фигурных электрода с одинаковыми вылетами.

Иногда фигурные электроды воспринимают очень большие изгибающие моменты. Во избежание деформации конусной посадочной части фигурный электрод дополнительно закрепляют за наружную поверхность электрододержателя с помощью хомутика и винта (рис. 4, а). Прочность фигурных электродов с большим вылетом значительно увеличивается, если выполнять их составными (армированными). Для этого основная часть электрода делается из стали, а токоведущая из медного сплава (рис. 4, б). Соединение токоведущих частей между собой может быть выполнено с помощью пайки, а со стальной консолью - на винтах. Возможен вариант конструкции, когда фигурный электрод из медного сплава подкрепляют (армируют) стальными элементами (планками), которые не должны образовывать вокруг электрода замкнутого кольца, так как в нем будут индуктироваться токи, увеличивающие нагрев электрода. Крепление фигурных электродов, испытывающих большие моменты, целесообразно выполнять в виде удлиненной цилиндрической части, для установки в машине вместо электрододержателя (см. рис. 4, б).

Рис. 4. Электроды, воспринимающие большой изгибающий момент:

а - с подкреплением за наружную поверхность электрододержателя;

б - армированный электрод: 1 - стальная консоль; 2 - электрод; 3 - токоподвод

В большинстве случаев при точечной сварке используется внутреннее охлаждение электродов. Однако, если сварка выполняется электродами малого сечения или с большим нагревом, а свариваемый материал не подвержен коррозии, в клещах применяют наружное охлаждение. Подвод охлаждающей воды осуществляется либо специальными трубками, либо через отверстия в рабочей части самого электрода. Большие трудности возникают при охлаждении фигурных электродов, так как подвести воду непосредственно к рабочей части не всегда возможно из-за малого сечения консольной части электрода. Иногда охлаждение выполняют с помощью тонких медных трубок, припаиваемых к боковым поверхностям консольной части фигурного электрода достаточно большого размера. Учитывая, что фигурные электроды всегда охлаждаются хуже прямых электродов, часто приходится существенно снижать темп сварки, не допуская перегрева рабочей части фигурного электрода и снижения стойкости.

При использовании для сварки в труднодоступных местах клещей, а также необходимости частой замены электродов применяют крепление электродов, показанное на рис. 5. Такое крепление обеспечивает хороший электрический контакт, удобное регулирование вылета электродов, хорошую устойчивость против боковых смещений, быстрый и простой съем электродов. Однако из-за отсутствия внутреннего охлаждения в таких электродах их применяют при сварке на малых токах (до 5…6 кА) и с малым темпом.

Рис. 5. Способы крепления электродов

Для удобства работы используют электроды, имеющие несколько рабочих частей. Эти электроды могут быть переставными или поворотными (рис. 6) и значительно упрощают и ускоряют установку электродов (совмещение рабочих поверхностей).

Рис. 6. Многопозиционные переставной (а) и поверхностный (б) электроды:

1 - электрододержатель; 2 - электрод

Электроды устанавливаются в электрододержателях, которые закрепляются на консольных частях сварочной машины, передающих усилие сжатия и ток. В табл. для справок приведены размеры прямых электрододержателей основных типов точечных сварочных машин. Электрододержатели должны изготавливаться из достаточно прочных медных сплавов с относительно высокой электропроводностью. Чаще всего электрододержатели выполняют из бронзы Бр.Х, которая должна быть термически обработана для получения необходимой твердости (НВ не менее 110). В случае сварки сталей, когда применяются небольшие токи (5…10 кА), электрододержатели целесообразно выполнять из бронзы Бр.НБТ или кремненикелевой бронзы. Эти металлы обеспечивают длительное сохранение размеров конусного посадочного отверстия электрододержателя.

Таблица. Размеры электрододержателей точечных машин в мм

Наибольшее распространение имеют прямые электрододержатели (рис. 7). Внутри полости электрододержателя проходит трубка для подвода воды, сечение которой должно быть достаточно для интенсивного охлаждения электрода. При толщине стенки трубки 0,5…0,8 мм ее наружный диаметр должен составлять 0,7…0,75 от диаметра отверстия электрода. В случае частой смены электродов целесообразно использовать электрододержатели с выталкивателями (рис. 7, б). Выталкивание электрода из посадочного гнезда производится при ударе деревянным молотком по бойку 5, который соединен с трубкой из нержавеющей стали - выталкивателем 1. Возврат выталкивателя и бойка в исходное нижнее положение выполняется пружиной 2. Важно, чтобы торец выталкивателя, ударяющий по торцу электрода, не имел повреждений на своей поверхности, в противном случае посадочная часть электрода будет быстро выходить из строя, заклиниваясь при его удалении из электрододержателя. Удобным для эксплуатации является выполнение конца электрододержателя 1 в виде сменной резьбовой втулки 2, в которой установлен электрод 3 (рис. 7, в). Такая конструкция позволяет изготавливать втулку 2 из более стойкого металла и заменять ее при износе и установке электрода другого диаметра, а также легко удалять электрод при заклинивании путем выбивания его стальной выколоткой изнутри втулки.

Рис. 7. Прямые электрододержатели:

а – нормальный;

б – с выталкивателем;

в – со сменной втулкой

Если фигурные электроды чаще применяются при сварке деталей, имеющих малые размеры соединяемых элементов, то при больших их размерах целесообразно использование специальных фигурных электрододержателей и простых электродов, Фигурные электрододержатели могут быть составными и обеспечивать установку электродов под различным, углом к вертикальной оси (рис. 8, а). Достоинством такого электрододержателя является легкая регулировка вылета электрода. В ряде случаев фигурный электрод может быть заменен электрододержателей, показанным на рис. 8, б. Интерес также представляет электрододержатель, наклон которого можно легко регулировать (рис. 8, в). Конструкция, изогнутого под углом 90° электрододержателя приведена на рис. 30, г, она позволяет закрепить электроды с цилиндрической посадочной частью. Специальный винтовой зажим обеспечивает быстрое закрепление и снятие электродов. На рис. 9 представлены различные примеры точечной сварки с использованием фигурных электрододержателей.

Рис. 8. Специальные электрододержатели

Рис. 9. Примеры применения различных электрододержателей

При точечной сварке крупногабаритных узлов типа панелей целесообразно использовать четырехэлектродную поворотную головку (рис. 10). Применение таких головок позволяет в четыре раза увеличить время работы электродов до очередной зачистки, не удаляя свариваемую панель из рабочего пространства машины. Для этого после загрязнения каждой пары электродов электрододержатель 1 поворачивается на 90° и закрепляется стопором 4. Поворотная головка позволяет также устанавливать электроды с различной формой рабочей поверхности для сварки узла с изменяющейся, например, ступенчато толщиной деталей, а также обеспечить механизацию зачистки электродов специальными устройствами. Поворотная головка может использоваться при точечной сварке деталей с большой разницей в толщине и устанавливается со стороны тонкой детали. Известно, что при этом рабочая поверхность электрода, контактирующего с тонкой деталью, быстро изнашивается и заменяется приповороте головки на новую. В качестве электрода со стороны толстой детали удобно использовать ролик.

Рис. 10. Поворотная электродная головка:

1 – поворотный электрододержатель; 2 – корпус; 3 – электрод; 4 – стопор

При точечной сварке оси электродов должны быть перпендикулярны поверхностям свариваемых деталей. Для этого сварку деталей, имеющих уклоны (плавно изменяющуюся толщину), или изготовляемых с помощью подвесных машин, при наличии крупногабаритных узлов выполняют с использованием самоустанавливающегося поворотного электрода со сферической опорой (рис. 11, а). Во избежание течи воды электрод имеет уплотнение в виде резинового кольца.

Рис. 11. Самоустанавливающиеся электроды и головки:

а - поворотный электрод с плоской рабочей поверхностью;

б - головка для двухточечной сварки: 1 - корпус; 2 - ось;

в - пластинчатый электрод для сварки сетки: 1, 7 - консоли машины; 2-вилка; 3 - гибкие шины; 4-качающийся электрод; 5 - свариваемая сетка; 6 - нижний электрод

На обычных точечных машинах сварка стальных деталей относительно небольшой толщины может выполняться сразу двумя точками с применением двухэлектродной головки (рис. 11, б). Равномерное распределение усилий на оба электрода достигается за счет поворота корпуса 1 относительно оси 2 под действием усилия сжатия машины.

Для сварки сетки из стальной проволоки диаметром 3…5 мм могут быть применены пластинчатые электроды (рис. 11, в). Верхний электрод 4 качается на оси для равномерного распределения усилий между соединениями. Подвод тока в целях его равномерности производится гибкими шинами 3; вилка 2 и ось качания изолированы от электрода. При длине электродов до 150 мм они могут выполняться некачающимися.

Рис. 12. Раздвижные клиновые электроды-вставки

При сварке панелей, состоящих из двух обшивок и ребер жесткости, внутри должна находиться электропроводная вставка, воспринимающая усилие электродов машины. Конструкция вставки должна обеспечивать ее плотное прилегание к внутренней поверхности свариваемых деталей без зазора, во избежание глубоких вмятин на внешних поверхностях деталей и возможных прожогов. Для этой цели может быть использована раздвижная вставка, показанная на рис. 12. Движение клина 2 относительно неподвижного клина 4, обеспечивающее их поджатие к свариваемым деталям 3, синхронизировано с работой машины. Когда электроды 1 и 5 сжаты и происходит сварка, воздух из пневмосистемы привода машины поступает в правую полость цилиндра 8, закрепленного на передней стенке машины и через тягу 7 перемещает клин 2, увеличивая расстояние между рабочими поверхностями клиньев. При поднятии электрода 1 воздух выходит из правой и начинает поступать в левую полость цилиндра 8, уменьшая расстояние между поверхностями клиньев, что позволяет перемещать свариваемую панель относительно электродов машины. Охлаждение клиновой вставки производится воздухом, который поступает по трубке 6. Использование такой вставки позволяет сваривать детали с внутренним расстоянием между ними до 10 мм.

k-svarka.com

Соединение деталей контактной точечной сваркой

  • 27 декабря
  • 77 просмотров
  • 13 рейтинг
  • Электроды для точечной сварки
  • Параметры точечной сварки
  • Возможные дефекты и их причины

Точечная сварка - метод, при котором соединение деталей внахлест производится в одной или нескольких точках. При подаче электротока происходит местный нагрев, в результате чего металл расплавляется и схватывается. В отличие от электродуговой или газовой сварки не требуется присадочный материал: плавятся не электроды, а сами детали. Не нужно и обволакивание инертным газом: сварочная ванна в достаточной мере локализована и защищена от попадания атмосферного кислорода. Сварщик работает без маски и рукавиц. Это позволяет лучше визуализировать и контролировать процесс. Точечная сварка обеспечивает высокую производительность (до 600 точек/мин) при низких затратах. Она широко используется в различных отраслях хозяйства: от приборостроения до самолетостроения, а также в бытовых целях. Без точечной сварки не обходится ни одна автомастерская.


Схема точечной сварки.

Оборудование для точечной сварки

Работы выполняются на специальном сварочном аппарате, называемом споттер (от англ. Spot - точка). Споттеры бывают стационарные (для работы в цехах) и переносные. Установка работает от электросети 380 или 220 В и генерирует заряды тока в несколько тысяч ампер, что значительно больше, чем у инверторов и полуавтоматов. Ток подается на медный или карбоновый электрод, который прижимается к свариваемым поверхностям пневматикой или ручным рычагом. Возникает тепловое воздействие, длящееся несколько миллисекунд. Однако этого хватает для надежной стыковки поверхностей. Так как время воздействия минимально, то тепло не распространяется дальше по металлу, а точка сварки быстро остывает. Свариванию подлежат детали из рядовых сталей, оцинкованного железа, нержавейки, меди, алюминия. Толщина поверхностей может быть различна: от тончайших деталей для приборостроения до листов толщиной 20 мм.

Общий вид точечного сварочного аппарата.

Контактно-точечная сварка может проводиться одним электродом или двумя с разных сторон. Первый способ используется для сварки тонких поверхностей или в тех случаях, когда прижим с двух сторон осуществить невозможно. Для второго способа используют специальные клещи, зажимающие детали. Этот вариант обеспечивает более надежное крепление и чаще используется для работы с толстостенными заготовками.

По типу тока аппараты для точечной сварки подразделяются на:

  • работающие на переменном токе;
  • работающие на постоянном токе;
  • низкочастотные аппараты;
  • аппараты конденсаторного типа.

Выбор оборудования зависит от особенностей технологического процесса. Наиболее распространены аппараты переменного тока.

Вернуться к оглавлению

Схема самодельного аппарата для точечной сварки.

Электроды для точечной сварки отличаются от электродов для электродуговой сварки. Они не только обеспечивают подачу тока на свариваемые поверхности, но и выполняют прижимную функцию, а также задействованы в отводе тепла.

Высокая интенсивность рабочего процесса обуславливает необходимость использования материала, стойкого к механическим и химическим воздействиям. Более всего выдвинутым требованиям соответствует медь с добавлением хрома и цинка (0,7 и 0,4% соответственно).

Качество сварной точки во многом определяется диаметром электрода. Он должен быть минимум в 2 раз больше толщины стыкуемых деталей. Размеры стержней регламентируются ГОСТом и имеют от 10 до 40 мм в диаметре. Рекомендуемые размеры электродов представлены в таблице. (Изображение 1)

Для сварки рядовых сталей целесообразно использовать электроды с плоской рабочей поверхностью, для сварки высокоуглеродистых и легированных сталей, меди, алюминия - со сферической.

Электроды со сферическими наконечниками более стойкие: способны произвести больше точек до перезаточки.

К тому же они универсальны и подойдут для сварки любого металла, а вот использование плоских для сварки алюминия или магния приведет к образованию вмятин.

Точечная сварка в труднодоступных местах выполняется электродами изогнутой формы. Сварщик, который сталкивается с подобными условиями работы, всегда имеет набор различных фигурных электродов.

Для надежной передачи тока и обеспечения прижима электроды должны плотно соединяться с электрододержателем. Для этого их посадочным частям придают форму конуса.

Некоторые виды электродов имеют резьбовое соединение или крепятся по цилиндрической поверхности.

Вернуться к оглавлению

Основными параметрами процесса являются сила тока, продолжительность импульса, усилие сжатия.

От силы сварочного тока зависит количество выделяемого тепла, скорость нагрева, величина сварного ядра.

Наряду с силой тока на количество тепла и размеры ядра влияет продолжительность импульса. Однако при достижении определенного момента наступает состояние равновесия, когда все тепло отводится от зоны сварки и уже не влияет на расплавление металла и размер ядра. Поэтому увеличение продолжительности подачи тока сверх этого нецелесообразно.

Усилие сжатия влияет на пластическую деформацию свариваемых поверхностей, перераспределение по ним тепла, кристаллизацию ядра. Высокое усилие сжатия снижает сопротивление электрического тока, идущего от электрода к свариваемым деталям и в обратном направлении. Таким образом, возрастает сила тока, ускоряется процесс расплавления. Соединение, выполненное с высоким усилием сжатия, отличается высокой прочностью. При больших токовых нагрузках сжатие препятствует выплескам расплавленного металла. С целью снятия напряжения и увеличения плотности ядра в некоторых случаях производится дополнительное кратковременное повышение усилия сжатия после отключения тока.

Выделяют мягкий и жесткий режим сварки. При мягком режиме сила тока меньше (плотность тока составляет 70-160 А/мм²), а продолжительность импульса может достигать нескольких секунд. Такая сварка применяется для соединения низкоуглеродистых сталей и более распространена в домашних условиях, когда работы проводятся на маломощных аппаратах. При жестком режиме продолжительность мощного импульса (160-300 А/мм²) составляет от 0,08 до 0,5 секунды. Деталям обеспечивают максимально возможное сжатие. Быстрый нагрев и быстрое охлаждение позволяют сохранить сварному ядру антикоррозийную стойкость. Жесткий режим используют при работе с медью, алюминием, высоколегированными сталями.

Выбор оптимальных параметров требует учета многих факторов и проведения испытаний после расчетов. Если же выполнение пробных работ невозможно или нецелесообразно (например, при разовой сварке в домашних условиях), то следует придерживаться режимов, изложенных в справочниках. Рекомендованные параметры силы тока, продолжительности импульса и сжатия для сварки рядовых сталей приведены в таблице. (Изображение 2)

Вернуться к оглавлению

Циклограммы процессов контактной точечной сварки.

Качественно выполненная точечная контактная сварка обеспечивает надежное соединение, срок службы которого, как правило, превышает срок службы самого изделия. Однако нарушение технологии может привести к дефектам, которые можно разделить на 3 основные группы:

  • недостаточные размеры сварного ядра и отклонение его положения относительно стыка деталей;
  • механические повреждения: трещины, вмятины, раковины;
  • нарушение механических и антикоррозийных свойств металла в зоне, прилегающей к сварной точке.

Рассмотрим конкретные виды дефектов и причины их возникновения:

  1. Непровар может быть вызван недостаточной величиной силы тока, чрезмерным сжатием, изношенностью электрода.
  2. Наружные трещины возникают при слишком большом токе, недостаточном сжатии, загрязненности поверхностей.
  3. Разрывы у кромок обусловлены близким расположением к ним ядра.
  4. Вмятины от электродов возникают при их слишком малой рабочей поверхности, неправильной установке, чрезмерном сжатии, слишком высоком токе и продолжительном импульсе.
  5. Выплеск расплавленного металла и заполнение им пространства между деталями (внутренний выплеск) происходит из-за недостаточного сжатия, образования в ядре воздушной раковины, несоосно установленных электродах.
  6. Наружный выплеск расплавленного металла на поверхность деталей может быть вызван недостаточным сжатием, слишком большими режимами тока и времени, загрязненностью поверхностей и перекосом электродов. Последние два фактора оказывают негативное влияние на равномерность распределения тока и плавление металла.
  7. Внутренние трещины и раковины возникают из-за чрезмерных режимов тока и времени, недостаточного или запаздывающего проковочного сжатия, загрязненности поверхностей. Усадочные раковины появляются в момент охлаждения ядра. Для их предотвращения и используют проковочное сжатие после прекращения подачи тока.
  8. Причиной неправильной формы ядра или его смещения является перекос или несоосность электродов, загрязненность поверхности деталей.
  9. Прожог является следствием загрязненности поверхностей или недостаточного сжатия. Во избежание этого дефекта ток необходимо подавать только после того, как сжатие обеспечено полностью.

Для выявления дефектов используют визуальный осмотр, рентгенографию, ультразвуковое исследование, капиллярную диагностику.

При испытательных работах контроль над качеством сварной точки производится методом разрыва. Ядро должно остаться полностью на одной детали, а на второй - глубокий кратер.

Исправление дефектов зависит от их характера. Применяют механическую зачистку наружных выплесков, проковку при деформации, термическую обработку для снятия напряжений. Чаще же бракованные точки просто переваривают.

expertsvarki.ru

Точечная сварка, благодаря появлению компактных ручных аппаратов типа BlueWeldPlus, становится популярной не только при промышленных масштабах применения, но и в быту. Слабым местом такой технологии являются электроды для контактной сварки: их низкая стойкость во многих случаях отпугивает потребителя.

Причины недолговечности электродов контактной электросварки

Процесс контактной сварки состоит из следующих стадий:

  1. Предварительной подготовки поверхности соединяемых деталей – она должна быть непросто очищена от загрязнений и окислов, но и очень ровной, чтобы исключить неравномерность возникающего напряжения электрического поля.
  2. Ручного или механического прижима свариваемых изделий – с увеличением усилия прижима растут интенсивность диффузии и механическая прочность сварного шва.
  3. Локального расплавления металлов в зоне прижима теплом электрического тока, в результате чего формируется сварочное соединение. Прижим электродов на этой стадии препятствует образованию сварочных брызг.
  4. Отключения тока и постепенного остывания сварного шва.

Таким образом, материал электродов для контактной сварки претерпевает не только значительные термические напряжения, но и механические нагрузки. Поэтому к нему предъявляется ряд требований – высокая электропроводность, высокая термическая стойкость (в том числе – и от постоянных колебаний температуры), повышенные значения предела прочности на сжатие, малый коэффициент теплоёмкости. Таким комплексом свойств обладает ограниченное число металлов. В первую очередь – это медь, и сплавы на её основе, однако и они не всегда удовлетворяют производственным требованиям.

В связи с постоянным повышением энергетических характеристик производимых аппаратов для точечной сварки многие торговые марки ориентируют потребителя на применение только «своих», фирменных электродов, что не всегда соблюдается. В результате снижается качество сварных швов, получаемых по такой технологии, подрывается доверие к самому процессу контактной электросварки.

Преодоление указанных проблем производится двумя путями: совершенствованием видов и конструкций сварочных электродов для точечной сварки, и разработкой новых материалов, используемых для изготовления таких электродов. Для частных пользователей имеет значение также и цена вопроса.

Материалы электродов

Согласно ГОСТ 2601, критерием качества готового шва является его прочность на разрыв или сдвиг. Она зависит от интенсивности тепловой мощности в зоне электрического разряда, а потому связывается в первую очередь с теплофизическими характеристиками материала электродов.

Использование медных электродов малоэффективно по двум причинам. Во-первых, медь, являясь высокопластичным металлом, не обладает достаточной упругостью, чтобы в период между рабочими циклами полностью восстановить геометрическую форму электродов. Во-вторых, медь весьма дефицитна, а частая замена электродов обуславливает и высокие финансовые затраты.

Попытки использовать более твёрдую, упрочнённую медь успеха не имеют: для нагартованного материала параллельно с повышением твёрдости снижается температура рекристаллизации, поэтому с каждым рабочим циклом износ рабочего торца электрода для контактной сварки будет возрастать. Поэтому практическое применение получили медные сплавы с добавлением ряда других металлов. В частности, введение в медный сплав кадмия, бериллия, магния, цинка и алюминия мало изменяет показатель теплопроводности, зато улучшает твёрдость при нагреве. Стойкость электрода от динамических тепловых нагрузок увеличивают железо, никель, хром и кремний.

При подборе оптимального материала сварочных электродов для контактной сварки ориентируются на показатель удельной электропроводности сплава. Чем меньше он будет отличаться (в меньшую сторону) от электропроводности чистой меди – 0,0172 Ом·мм2/м, тем лучше.

Наиболее эффективную стойкость против износа и деформации показывают сплавы, в состав которых входят кадмий (0,9…1,2%), магний (0,1…0,9%) и бор (0,02…0,03%).

Выбор материала для электродов точечной сварки зависит также и от конкретных задач процесса. Можно выделить три группы:

  1. Электроды, предназначенные для проведения контактной сварки в жёстких условиях (непрерывное чередование циклов, поверхностные температуры до 450…500ºС). Их изготавливают из бронз, содержащих хром и цирконий (Бр.Х, Бр.ХЦр 0,6-0,05. В эту же группу включают никель- кремнистые бронзы (Бр.КН1-4), а также бронзы, дополнительно легированные титаном и бериллием (Бр.НТБ), используемые для точечной сварки нержавеющих и жаропрочных сталей и сплавов.
  2. Электроды, применяемые при контактных температурах на поверхности до 250…300ºС (сварка обычных углеродистых и низколегированных сталей, медных и алюминиевых изделий). Их производят из медных сплавов марок МС и МК.
  3. Электроды для относительно лёгких режимов эксплуатации (поверхностные температуры до 120…200ºС). В качестве материалов применяется кадмиевая бронза Бр.Кд1, хромистая бронза Бр.Х08, кремненикелевая бронза Бр.НК и др. Такие электроды могут использоваться также и для роликовой контактной электросварки.

Следует отметить, что по убыванию удельной электропроводности (по отношению к чистой меди) эти материалы располагаются в следующей последовательности: Бр.ХЦр 0,6-0,05→МС→МК→Бр.Х→Бр.Х08→Бр.НТБ→Бр.НК →Бр.Кд1→Бр.КН1-4. В частности, разогрев до требуемой температуры электрода, изготовленного из бронзы Бр.ХЦр 0,6-0,05 произойдёт примерно вдвое быстрее, чем полученного из бронзы Бр.КН1-4.

Конструкции электродов

Наименее стойким местом электрода является его сферическая рабочая часть. Электрод бракуется, если увеличение размеров торца превышает 20% от первичных размеров. Конструкция электродов определяется конфигурацией свариваемой поверхности. Различают следующие исполнения инструмента

  1. С цилиндрической рабочей частью и конической посадочной частью.
  2. С коническими посадочной и рабочей частью, и переходным цилиндрическим участком.
  3. Со сферическим рабочим торцом.
  4. Со скошенным рабочим торцом.

Кроме того, электроды могут быть сплошными и составными.

При самостоятельном изготовлении (либо перезаточке) рекомендуется выдерживать следующие соотношения размеров, при которых инструмент будет обладать максимальной стойкостью:

  • Для расчёта диаметра электрода d пользуются зависимостью Р = (3…4)d2, где Р – фактически необходимое сжатие электродов при проведении процесса контактной электросварки. В свою очередь, рекомендуемые значения давления осадки, при котором получаются наиболее качественные соединения, составляет 2,5…4,0 кг/мм2 площади получаемого сварного шва;
  • Для электродов с конической рабочей частью оптимальный угол конусности варьируется от 1:10 (для инструмента с диаметром рабочей части до 30…32 мм) до 1:5 – в противоположном случае;
  • Выбор угла конуса определяется также и наибольшим усилием сжатия: при максимальных усилиях рекомендуется принимать конусность 1:10, как обеспечивающую повышенную продольную стойкость электрода.

Основные формы электродов для контактной сварки устанавливает ГОСТ 14111, поэтому, применяя те или иные соотношения размеров, следует учитывать размеры посадочного пространства под инструмент для конкретной модели машины контактной сварки.

Значительную экономию материала даёт применение составных конструкций. При этом для изготовления корпуса применяют материалы с высокими значениями электропроводности, а съёмную рабочую часть изготавливают из сплавов с высокой твёрдостью и износостойкостью (в том числе и термической). В частности, подобным сочетанием свойств обладают металлокерамические сплавы от швейцарской фирмы АМРСО марок A1W или A1WC, содержащие 56% вольфрама и 44% меди. Их электропроводность достигает 60% от электропроводности чистой меди, что определяет малые потери на нагрев при выполнении сварки. Рекомендуемым материалом могут быть и бронзовые сплавы с добавками хрома и циркония, а также вольфрам.

Электроды для контактной сварки лёгких сплавов, где не требуется значительного усилия прижима, выполняют со сферической рабочей частью, а для контактных губок аппаратов точечной электросварки целесообразно применять кремнистые бронзы.

Механические характеристики электродов должны находиться в следующих пределах:

  • Твёрдость по Бринеллю, НВ – 1400…2600;
  • Модуль Юнга, ГПа – 80…140;
  • Предельный изгибающий момент, кгсм – не ниже 750…800.

Конструкции электродов всегда должны быть полыми, для обеспечения эффективного охлаждения.

proinstrumentinfo.ru

Технология и аппараты точечной сварки

Что такое точечная сварка? Это контактный способ соединения заготовок в одной или нескольких точках. Сформированное соединение похоже на заклепку.

Преимущества метода:

  • сварка металлов разных сплавов (от дорогих до дешевых);
  • прочность и эстетический вид соединения;
  • высокая скорость (производительность);
  • экономичность в расходе материалов;
  • низкая квалификация рабочего.

Недостатки: шов не герметичен, концентрация напряжения в зоне соединения.

Точечная технология получила широкое распространение в промышленности и в быту. Её соединяют, как малые детали в приборостроении, так и крупные стальные листы в разных областях промышленности.

Последовательность технологии

Весь процесс можно описать так:

  1. Приготовленные детали помещаются между двух электродов и сжимаются с определенным усилием;
  2. подается электрический ток на электроды;
  3. происходит нагрев и расплавление металла в месте контакта;
  4. выключается питание (проковка) - кристаллизация ядра расплава;
  5. снимается сжатие с деталей.

Проковка может осуществляться с повышением сжатия или без.

Формы и размеры точечного соединения зависят от силы электрического тока, времени процесса, электродов, силы сжатия и чистоты поверхности заготовок. Диаметр сварной заклепки может быть от 3 до 12 мм.

Подготовка заготовок к сварке

Материал зачищают только в месте соприкосновения электродов с поверхностью. Для этого применяют щетки, круги, пескоструйные инструменты и растворы для травления.

Без очистки - быстрее изнашиваются электроды, хромает качество скрепления материала и возрастает потребление электричества.

Оборудование для точечной сварки

Аппараты точечной сварки бывают:

  • с переменным током;
  • с постоянным током;
  • машины конденсаторного вида;
  • низкочастотные аппараты.

Каждому аппарату точечной сварки присущи свои плюсы и минусы.

В продаже есть разные модели аппаратов, на все случаи жизни

Оборудование с переменным током пользуется большей популярностью. В устройство аппаратов входит - силовой трансформатор, тиристорный модуль, понижающий трансформатор, логические контроллеры, реле, блок управления и др.

Что такое конденсаторная сварка? Технология простая: при зарядке в конденсаторе постепенно накапливается энергия, которая при расходе генерирует импульс тока большой величины.

Благодаря этому, при сварке потребляется меньшая контролируемая мощность от сети. Данная технология отлично соединяет металлы с хорошей теплопроводностью (серебро, алюминиевые - медные сплавы).

Отметим: точечное скрепление может выполняться мягким и жестким режимами.

При мягком процессе, заготовки греют умеренным током от 0,5 до 3 сек. Метод применяют для соединения склонных к закалке изделий.

Жесткий метод применим для высоколегированных сталей, сплавов алюминия и меди. Время разогрева 0,1 - 1,5 сек.

Стоимость оборудования

Промышленность поставляет на рынок разные аппараты для точечной сварки - цена сильно отличается от мощности и предназначения машин. Есть ручные переносные модели и мощные станки для цеховых работ.

Например, ручные сварочные клещи для точечной сварки BlueWeld Plus 230 823226 можно приобрести за 40 000 рублей.

Споттеры. Аппарат TELWIN DIGITAL CAR SPOTTER 5500 (400) обойдется в 66 000 рублей.

Технические характеристики Telwin

Сейчас, в интернет-магазинах можно купить китайскую точечную сварку для аккумуляторов хинт (от 7 000 рублей).

Фото китайского аппарата для аккумуляторов

Надо отдать должное нашим умельцам, которые своими руками собирают разнообразные приборы для точечного соединения. Конечно же, в других публикациях мы расскажем об этом и даже о самодельной точечной сварке инвертором.

Видео: как изготовить аппарат точечной сварки самостоятельно.

Электроды

Электроды для точечной сварки должны выполнять свою функцию - это сжатие металлических изделий и подвод тока к ним.

Разная форма электродов

Важную роль у электрода выполняет наконечник. К примеру, тонкие очень быстро изнашиваются и их необходимо подтачивать. Самая лучшая форма - это конус.

Как продлить жизнь электродов:

  • покупать только фирменные изделия;
  • для каждого сплава применять свой электрод;
  • при тяжелых условиях сварки использовать правильные наконечники;
  • эксплуатировать прозрачные шланги для контроля воды.

Знайте: подпиленный электрод приводит к плохой сварке. Также, храните их в специальных местах, чтобы избежать повреждений.

Простыми и качественными электродами являются прямые, которые соответствуют ГОСТ 1411-69, их делают из специальных медных сплавов. Часто, рабочая часть электрода сменная, что позволяет устанавливать нужный размер исходя от сплава и толщины свариваемых заготовок.

Крепление рабочей части осуществляется гайкой, припоем или запрессовкой на конус. Большее распространение получила конусная рабочая часть.

Наконечники бывают с плоской и сферической формой. Сферическая поверхность используется для всех машин и сплавов, а плоская подходит не во всех случаях.

При точечной сварки для труднодоступных мест, иногда применяют электроды разной конфигурации. Имеющие меньшую износостойкость, чем прямые аналоги.

P.S. Мы познакомились с технологией точечной сварки (контактной), узнали преимущества и минусы данного типа соединений, какие используются аппараты и электроды для выполнения процесса.

(1 оценок, среднее: 5,00 из 5) Загрузка...

Высокая стойкость электрода и надлежащее качество сварного точечного соединения невозможны без правильного ухода за электродами. От 3 до 10% рабочего времени сварщика уходит на обслуживание электрода. Правильный уход за электродами позволяет одной парой электродов выполнить 30…100 тыс. сварных точек, при этом расход электродного сплава составляет всего лишь 5…20 г на тысячу сваренных точек.

Уход за электродами точечных машин состоит из двух операций - зачистки электродов непосредственно на машине и заправки снятого электрода на токарном или специальном станке.

Периодичность зачистки зависит главным образом от свариваемого материала. При сварке стали с хорошо подготовленной поверхностью в одних случаях можно обходиться без зачистки, в других требующаяся зачистка выполняется после сварки нескольких сот точек. При сварке алюминиевых сплавов требуется зачистка электродов через 30…60 точек, иначе начинается прилипание электродного металла к свариваемому, что нарушает процесс сварки, а также ухудшает коррозионную стойкость сварного соединения. Это же явление наблюдается и при сварке других материалов с пониженной температурой плавления, таких, например, как магний.

Зачистку следует осуществлять таким образом, чтобы, не снимая большого количества металла, получить чистую поверхность электрода. Для упрощения этой операции и облегчения условий труда при зачистке электродов применяются специальные приспособления.

Наиболее простое приспособление показано на рис. 1. Оно представляет собой лопаточку с двусторонними углублениями, в которые вкладывается наждачная бумага. Лопаточка вставляется между сжатыми электродами, и при поворачивании вокруг оси электродов зачищает их контактные поверхности.

Рис. 1. Приспособление для ручной зачистки электродов:

1 - шкурка; 2 - сферическая выемка.

Вместо такой лопаточки можно пользоваться стальной пластиной для зачистки электродов с плоской контактной поверхностью или куском резины - для зачистки электродов со сферической рабочей поверхностью. Электроды с плоской контактной поверхностью зачищаются одновременно или поочередно, со сферической - одновременно, при небольшом сжимающем усилии. После зачистки следы абразивной пыли удаляются сухой ветошью.

Стремление механизировать процесс зачистки контактной поверхности электродов привело к созданию приспособлений с электрическим или пневматическим приводом. На рис. 2 показана пневматическая машинка для зачистки электродов.

Рис. 2. Угловая пневматическая машинка для зачистки электродов

Необходимость в зачистке контактной поверхности определяется визуально, по состоянию поверхности свариваемого изделия, но известны попытки определения момента зачистки при помощи специальных приспособлений.

С помощью программного управления осуществляются не только установка свариваемого узла, сварочного тока и времени сварки, но и подается сигнал о необходимости зачистки электродов.

Предлагается момент зачистки электродов определять по сравнению яркости светового луча, отраженного от контактной поверхности электрода, с яркостью луча, отраженного от поверхности эталона. Этот способ позволяет также прекращать процесс сварки под действием сигнала, величина которого возрастает при загрязнении рабочей поверхности электрода.

Заправка рабочей части изношенного электрода с целью восстановления первоначальной формы может производиться несколькими способами. Наименее качественным является заправка мелким напильником. Рекомендуется для указанных целей применять специальные заправники. Пример ручного заправника приводится на рис. 3.

Рис. 3. Ручной заправник электродов:

1 - корпус; 2 - винты. 3 - резцы; 4 - ручка.

Также рекомендуется применение специальных пневматических заправников, оснащенных торцовой фрезой, профиль режущей части которой соответствует профилю рабочей части электрода. Специальная фреза вставляется в патрон обычной ручной дрели и позволяет одновременно обрабатывать коническую и плоскую поверхность рабочей части электрода.

Хорошим способом заправки электродов является заправка на токарных станках с проверкой размеров по шаблону.

При большом количестве заправляемых электродов целесообразно применять специальные станки типа.

Для быстрой смены электродов без повреждения рекомендуется применять электроды с лысками под ключ или пользоваться специальными съемниками.

Простейший съемник (рис. 4) представляет собой винтовой зажим специальной конструкции.

Рис. 4. Съемник простейшей конструкции:

1 - корпус; 2 - плашки; 3 - зажимной винт.

Восстановление изношенных электродов для точечной сварки ранее не практиковалось. За последнее время разработана технологию восстановления электродов точечных сварочных машин дуговой наплавкой. Твердость, электропроводность и стойкость восстановленных электродов соответствуют свойствам электродов, изготовленных из прутков. Применение метода восстановления электрода наплавкой только для одной многоточечной машины позволяет экономить до 500 кг бронзы в год.

© 2024 sun-breeze.ru
Новые идеи бизнеса - Животные и растения. Заработок в интернете. Автобизнес