Печи коротко барабанные для плавки металла. Для плавки различных металлов

В специальных электропечах барабан очень важная деталь. Эти печи так и называются – барабанные ! Прокалка, сушка и другие виды термообработки порошков, гранул и других сыпучих материалов представляют определенные трудности при нагреве в камерных печах. При прокалке сыпучих материалов в поддонах отдельные частички слипаются, неравномерно прогреваются из-за плохой теплопроводности насыпной массы. Качество термообработки плохое, загрузка неудобная и тяжелая, производительность в серийном производстве очень низкая.

Барабан для печи хорош, прежде всего, тем, что он вращается . А это означает, что содержимое непрерывно перемешивается . Отдельные частички равномерно прогреваются, их слипание исключается . После термообработки получается масса, которую можно свободно пересыпать в другие емкости, фасовать или перерабатывать дальше. Определенный заданный наклон барабана позволяет одновременно с пересыпанием обеспечивать продвижение массы вдоль барабана (со стороны загрузки до окна выгрузки). Высокая производительность обеспечивается непрерывным процессом, т.е. загрузка, термообработка и выгрузка сыпучих материалов идут непрерывно. Барабан может иметь внутри продольные ребра, которые улучшают перемешивание. Может оснащаться специальным шнеком, который гарантирует заданную скорость перемещения массы. Если барабан оснащен шнеком, то, меняя направление вращения барабана, можно изменять направление движения насыпной массы, можно даже подавать ее по наклонному барабану вверх, что очень удобно совмещается, например, с транспортировкой массы в высокий бункер.

СУШКА , как известно, дело простое. Это удаление воды с поверхности или удаление воды, содержащейся внутри материалов. С повышением температуры скорость удаления воды возрастает. Поэтому для интенсивной сушки необходим нагрев до температуры выше температуры кипения с отводом паров в атмосферу. Для удаления связанной влаги, т.е. когда вода входит в состав сложных молекулярных соединений, необходим еще более высокотемпературный нагрев.

Для качественной сушки, кроме равномерного нагрева, необходимо также интенсивное перемешивание сыпучих материалов, иначе частички слипаются.

Удачным решением высокопроизводительной сушки является барабанная печь. С одной стороны непрерывно загружается влажное сырье, с другой непрерывно выходит просушенный готовый к дальнейшему использованию материал. Барабан непрерывно вращается, обеспечивая с одной стороны перемешивание сырья, а с другой - непрерывное продвижение вдоль трубы. Такое перемещение обеспечивает равномерный и постепенный нагрев сырья по мере его продвижения по барабану.

Для загрузки влажного сырья применяется специальный рукавный бункер с виброзагрузчиком, обеспечивающий принудительную подачу сырого порошка в барабан. Высыпаться из барабана просушенный порошок может без дополнительных устройств.

Регулироваться производительность барабанной печи может углом наклона барабана и рабочей температурой. С увеличением угла наклона скорость продвижения сыпучего материала увеличивается. С повышением температуры скорость сушки возрастает. Важно только подобрать их оптимальную величину для каждого типа сырья.

Еще больше увеличивает производительность печи продувка барабана горячим воздухом , интенсивно удаляющим пары воды в атмосферу.

ЗАКАЛКА сталей является известной операцией, которая заключается в нагреве деталей до определенной температуры, а затем их резким охлаждением, чаще всего в воде или в другой жидкости. Детали для термообработки укладываются в рабочей камере электропечи на поддон из жаропрочной стали. Для выгрузки деталей открывают дверь, клещами достают детали и погружают их в жидкость. А если деталей – тысячи, как, например, дюбели, детали подшипников, стальная дробь или другие массовые изделия?

Тогда необходимо использовать барабанную электропечь. С одной стороны, можно непрерывно загружать детали в барабанную электропечь, после прогрева до требуемой температуры, непрерывно сбрасывать их в закалочную жидкость. Производительность закалки высочайшая! Процесс легко полностью автоматизировать.

После закалки, с целью уменьшения внутренних напряжений, производится ОТПУСК закаленных деталей. Для отпуска стальные детали нагреваются до температуры ниже фазовых превращений. После выдержки при этой температуре детали медленно охлаждаются с заданной скоростью вместе с печью или на воздухе. Если процесс отпуска проводить в другой барабанной электропечи, то весь цикл термообработки массовых деталей можно выстроить в линию и полностью автоматизировать.

Коррозия. Ей, к сожалению, подвержены изделия из чугуна и стали. ЗАЩИТИТЬ изделия от КОРРОЗИИ сегодня можно очень эффективно, если использовать современные технологии термодиффузионных покрытий.

Для термодиффузионного цинкования используется барабанная электропечь, в которой антикоррозионное покрытие формируется в герметично закрытом барабане. Диффузионное насыщение цинком поверхности металлических изделий ведется в порошковой среде. При нагреве деталей в порошке идет диффузия молекул цинка из газовой среды в поверхностный слой обрабатываемых деталей, создавая тем самым антикоррозионную защиту. Технология не требует очистных сооружений, что делает ее очень компактной.

Процесс термодиффузионного цинкования позволяет получать равномерно распределенное покрытие любой заранее заданной толщины от 15 до 120 мкм. Полученное покрытие имеет повышенную твердость и износостойкость. Покрытие в точности сохраняет рельеф обрабатываемой поверхности, что очень важно для деталей, имеющих резьбу, пазы, шлицы и т.д.

Внешняя простота барабанной печи очень обманчива. Тепловой расчет невероятно сложен: пересыпающаяся масса имеет разную плотность, теплоемкость и теплопроводность. Нестационарные тепловые потоки трудно поддаются моделированию, а значит, и тепловому расчету. Динамические характеристики печи меняются с изменением температуры и теплофизических свойств насыпной массы, что очень усложняет настройку регуляторов температуры. Даже простое измерение температуры во вращающемся барабане представляет серьезную проблему!

Но если эти проблемы решены - барабанная электропечь способна обеспечить очень высокую производительность термообработки массовых деталей, окупив тем самым все издержки по отладке любого, даже очень сложного техпроцесса.

Теоретическая сущность процесса

Сущность горновой плавки заключается в обработке смеси богатого сульфидного свинцового концентрата с твердым топливом струей сжатого воздуха. При этом происходит частичный обжиг PbS с образованием РbО и PbSO 4 и реакции взаимодействия между PbS и продуктами его окисления - РbО и PbSO 4 . Обжиг и реакционная плавка проводятся одновременно; кроме того, часть свинца восстанавливается углеродом топлива.

Реакция обжига PbS и ее тепловой эффект следующий:

2PbS + ЗО 2 = 2РbO + 2SO 2 + 201 360 кал(8450 кдж),(1)

приведенная реакция является суммарной, так как процесс окисления сульфида свинца протекает в несколько ступеней;

2РbО + 2SO 2 + О 2 = 2PbSO 4 + 183 400 кал(7680 кдж).(2)

Заметные количества сульфата свинца образуются при окислении сульфида уже при 200-300°С, процесс протекает крайне медленно.

После частичного обжига шихта содержит в твердом состоянии следующие химические соединения свинца: PbS, РЬО и PbSO 4 . При нагревании этих веществ, взятых в определенном соотношении, протекают следующие реакции:

PbS + 2РЬ0 = ЗРЬ + SO 2 - 52 540 кал(2200 кдж), (3)

PbS + PbSO 4 = 2Pb + 2SO 2 - 97 380 кал(4070 кдж). (4)

При определенных температуре и давлении SO 2 наступает химическое равновесие: реакции протекают с одинаковой скоростью в обоих направлениях. При повышении температуры равновесие нарушается, и реакции идут слева направо в сторону образования РЬ и SO 2 . Таким образом, повышение температуры полезно для реакционной плавки, так как при этом возрастает выход металлического свинца и ускоряется обжиг PbS. Но как для обжига (во избежание комкования), так и для самой реакционной плавки шихту необходимо сохранять в твердом состоянии. Поэтому процесс реакционной плавки осуществляется при температурах не выше 800-850°С. При более высоких температурах РbО расплавляется, происходит расслаивание по плотности, отчего нарушается контакт между сульфидом и окислом свинца в вытапливание свинца прекращается.

Избыточная окись свинца восстанавливается за счет С и СО по реакциям:

РbО + С = Рb + СО; (5)

РbО + СО = Рb + СО 2 . (6)

Для осуществления этих реакций в шихту горновой плавки вводят некоторое количество углеродистого топлива. Обычно это коксовая мелочь в количестве 4-10% от веса шихты. Чем интенсивнее процесс и чем больше в шихте содержится сульфидной серы, тем меньше требуется топлива для горновой плавки.

Оптимальная крупность кокса от 5 до 15мм.Более крупные частицы кокса способствуют сегрегации шихты, а более мелкие выносятся с пылью.

Короткобарабанная печь представляет собой стальной клепанный кожух, футерованный высокоглиноземистым кирпичом состава, %: 65-70 А1 2 О 3 ; 20-25 SiO 2 ; 3TiO 2 ; 5Fe 2 O 3 ; 0,5СаО. Между кожухом печи и огнеупорной футеровкой находится утрамбованный слой пластической глины толщиной 50 ммна случай расширения футеровки при ее нагревании.


Плавка осуществляется прерывно, каждая операция длится около 4 ч. Загрузив несколько тонн шихты, короткобарабанную печь вращают со скоростью 0,5-1,0 об/мини энергично подогревают сжигаемой угольной пылью до температуры интенсивного протекания реакции (1100°С). Печь может вращаться в двух противоположных направлениях. Благодаря вращению осуществляется хороший контакт между сульфидами и окислами свинца, необходимый для успешной реакционной плавки. Топочные газы проходят котел-утилизатор и фильтруются в мешочных фильтрах.

К концу плавки ее продукты (свинец, шпейза, штейн, шлак) хорошо разделяются по плотности в печи с глубокой ванной и выпускаются раздельно.


Метод реакционной плавки в короткобарабанной печи сравнительно недавно начали применять в ФРГ для переработки богатых свинцовых концентратов, содержащих не менее 65-75% Pb, и некоторых полупродуктов свинцового производства.
Метод плавки в короткобарабанных печах применяют на заводе в Окере (ФРГ), где имеются 4 такие печи, в ГДР, на нескольких заводах ПНР и на некоторых европейских заводах. Иногда барабанную печь конструктивно значительно изменяют (удлиняют) и называют печью Дершля.
Для изучения физико-химических основ процесса прямого восстановления свинца в ФРГ были проведены опытные плавки специально подготовленной в стехиометрической пропорции смеси PbS, PbO и PbSО4.
На основе проведенной работы были сделаны следующие выводы;
1) в результате нагрева смеси PbS - PbO протекает реакция PbS + 2РbO = 3Рb + SO2 при температуре 920° С, при этом давление SO2 достигает 1 ат (1*10в5 н).
2) значительная скорость реакции между PbS, с одной стороны, и PbO или PbSО4, с другой, достигается лишь после доведения до жидкого состояния соответствующих смесей;
3) наивысшая скорость реакции в обоих случаях достигается при 920° С; при этой температуре и давлении SO2 1 ат (1*10в5 н) интенсивно выделяется металлический свинец.
Таким образом, исследователями было установлено, что реакционную плавку нужно проводить при более высокой температуре.
Для подготовки концентрата к плавке целесообразно подвергать его одноступенчатому агломерирующему обжигу с возможно меньшим количеством добавок с тем, чтобы соотношение PbS-PbO-PbSО4 в агломерате находилось в пределах, необходимых для реакционной плавки.
Агломерирующий обжиг можно проводить либо с просасыванием воздуха сверху вниз, либо с подачей воздуха под давлением снизу вверх. Последний способ имеет ряд преимуществ, особенно при переработке богатых свинцовых концентратов.
При агломерирующем обжиге были получены такие результаты:

Короткобарабанная печь представляет собой стальной клепаный кожух, футерованный высокоглиноземистым кирпичом состава, %: 65-70 Аl2О3; 20-25 SiО2; 3TiO2; 5Fе2О3; 0,5СаО. Толщина футеровки 250 мм. Между кожухом печи и огнеупорной футеровкой находится утрамбованный слой пластической глины толщиной 50 мм на случай расширения футеровки при ее нагревании.
Печь приводится во вращение электродвигателем с контактными кольцами трехфазного тока, 1000-500 об/мин. Мощность электродвигателя 9 квт.
Общий вид печи представлен на рис. 76, а разрезы - на рис. 77.
Основные данные короткобарабанной печи

Печь отапливается буроугольной пылью. Для улучшения процесса горения топлива в печь вводят первичный и вторичный воздух. Из печных газов можно извлечь до 50% серы в виде серной кислоты. Теплоту газов используют в котле-утилизаторе: на 1 г пылеугля получают 2-2,5 г пара. После котла газы фильтруют в мешочных фильтрах.
Процесс плавки периодический. Шихту загружают в печь либо малыми порциями, чтобы не слишком снизить температуру, после чего печь быстро нагревают до температуры интенсивного протекания реакций (1100° С), либо все потребное на операцию количество загружают сразу на слой жидкого свинца или шлака, оставленный в печи от прошлой плавки. Ванна нагревается пламенем и теплом футеровки.

Печь может вращаться в двух противоположных направлениях со скоростью 0,5-1,0 об/мин, что способствует хорошему контакту материалов и продуктов плавки и ускоряет процесс. Во время плавки поддерживается температура; пламени угольной пыли 1600° С, внутренней стенки футеровки 1100° С, топочного газа 1200° С. Пламя меняет направление в печи, и отходящие газы выходят из нее через верхнюю часть этого же отверстия. Напротив топочного отверстия имеется загрузочное окно, которое обычно закрыто.
К концу плавки ее продукты (свинец, шпейза, шлак) хорошо разделяются по плотности в печи с глубокой ванной и выпускаются по отдельности.
Часть тепла горячих газов печи используется в котле-утилизаторе для производства пара. Можно утилизировать серу для производства серной кислоты в размере -50%. Флюсов для плавки не требуется, а капитальные затраты на строительство завода по этому способу ниже, чем затраты по методу шахтной плавки.

Выбор и применение той или иной печи для плавки цинка и цинковых сплавов зависит от объема и характера производства, свойств и назначения сплава, обеспечения производства электроэнергией, топливом и других факторов. Кроме того, при выборе плавильного агрегата необходимо исходить из необходимости получения сплавов высокого качества при минимальных потерях цинка и легирующих компонентов вследствие угара, минимальной продолжительности и высокой производительности, минимальном расходе электроэнергии (или топлива) и футеровочных материалов на единицу расплавленной шихты, надежности, простоте обслуживания печи и т.д. В зависимости от источника энергии и конструктивных особенностей различают следующие основные плавильные печи для приготовления цинка и цинковых сплавов: топливные и электрические (тигельные и индукционные).

Топливные печи

В топливных печах в качестве топлива используют каменноугольную пыль, мазут, природный и иногда коксовый газ. К этим печам относятся пламенные отражательные и тигельные печи. В литейных цехах для переплавки значительных количеств цинка применяют несколько модификаций отражательных печей: одно-, двух- и трехкамерные. Наибольшее распространение получили одно- и двухкамерные печи. Отражательные печи таких типов имеют большие размеры и удобны для переплавки низкосортного цинка, содержащего большое количество примесей железа и свинца. Основными частями отражательных двухкамерных печей непрерывного действия служат плавильная камера и копильник (рис. 52). Горелки или форсунки расположены в торцевой стенке плавильной камеры.

Под плавильной камеры сделан наклонным, с подъемом к порогу загрузочных окон. Это дает возможность легко отделять из цинковых расплавов железо- и свинецсодержащие фазы, которые осаждаются и отстаиваются в плавильной камере. Расплавленный цинк поступает из плавильной камеры в копильник по специальному каналу. Футеровку топливных отражательных печей выполняют из шамотного кирпича.

При небольшом количестве изготавливаемых цинковых сплавов применяют стационарные и поворотные тигельные топливные печи. Для плавки цинковых сплавов применяют графитовые, шамотно-графитовыe, чугунные или стальные (более стойкие, чем чугунные) тигли. Для повышения стойкости тигля и предотвращения взаимодействия расплавов с материалом тигля его внутреннюю поверхность покрывают огнеупорными обмазками, составы некоторых из них приведены ниже, % (по массе):

1) кварцевый песок 60, огнеупорная глина 30, жидкое стекло 10;

2) магнезитовая крошка 59, асбест молотый 12, жидкое стекло 10, шамотный порошок 18, кремнефтористый натрий 1,0; 3) огнеупорная глина 20, магнезитовая крошка 60, порошкообразный графит 10, жидкое стекло 10; 4) порошкообразный графит 70, тальк 20, жидкое стекло 10; 5) огнеупорная глина 18, порошкообразный графит 17, жидкое стекло 5, шамотный порошок 60.

Огнеупорную обмазку готовят в смесителе путем перемешивания сухих составляющих и последующего увлажнения сухой массы жидким стеклом. Приготовленную обмазку в тестообразном состоянии наносят толщиной до 3-10 мм на внутреннюю поверхность тигля. Трещины в обмазке и другие дефекты заделывают обмазкой исходного состава с последующей сушкой. Для получения гладкого поверхностного слоя обмазки ее покрывают специальными красками.

В состав красок входят в качестве наполнителя водные растворы порошкового мела, или оксида цинка (II), талька, глинозема, магнезита и другие с добавкой крепителей, например жидкого стекла. Некоторые составы красок приведены ниже, % (по массе): 1) жидкое стекло 5, мел отмученный 60, асбест молотый 15, вода 20; 2) жидкое стекло 5, огнеупорная глина 19, вода 76; 3) оксид цинка (II) 10, жидкое стекЛо 6, огнеупорная глина 4, вода 80; 3) оксид цинка (II) 1, жидкое стекло 4, вода 89; 4) жидкое стекло 4, мел отмученный 12, вода 84.

Краски наносят на нагретую до 120-150 °С внутреннюю поверхность тигля, а затем просушивают и даже прокаливают до 350-400 С, если в состав входят связующие вещества.

Тигельные печи обладают следующими положительными качествами:

Универсальностью (можно плавить разнообразные по составу сплавы),

Маневренностью (простота перехода с одной плавки на другую),

Минимальной поверхностью соприкосновения металла с печными газами (малые угар и газонасыщенность металла),

Простотой устройства и обслуживания.

Однако тигельные печи имеют и недостатки: малая производительность, низкий тепловой к.п.д. (7-10%) вследствие потерь тепла с отходящими газами и большой расход топлива (20-25 % мазута и 50-60% кокса от массы выплавляемого металла). До настоящего времени в литейных цехах применяют самые разнообразные тигельные печи начиная от простейших коксовых и нефтяных горнов и кончая более совершенными газовыми и электрическими тигельными печами.

Тигельные электрические печи . Электрические тигельные печи сопротивления являются наиболее универсальными агрегатами, пригодными для плавки цинковых сплавов при. сравнительно небольших масштабах производства. Наибольшее распространение для плавки и выдержки цинковых сплавов нашли печи сопротивления типа CAT (рис. 53) трех видов: поворотные плавильные, стационарные плавильные и стационарные раздаточные (табл. 38).

Основные преимущества тигельных электрических печей перед печами с нефтяным или газовым обогревом: значительное снижение угара и возможность получения жидкого металла лучшего качества. Недостаток этих печей заключается в сравнительно медленном нагреве шихты, что не позволяет осуществлять в печах скоростные плавки. На некоторых заводах при плавке электролитного и полиграфического цинка находят применение отражательные электрические печи сопротивления.

Индукционные электрические печи являются в настоящее время наиболее совершенными плавильными агрегатами для плавки цинка и цинковых сплавов, так как они обеспечивают получение сплавов высокого качества, имеют высокий тепловой и электрический к.п.д., весьма экономичны и наиболее удобны в обслуживании. К преимуществам индукционных печей следует отнести также малые потери металла, их высокую производительность, которая в 2-3 раза превышает производительность топливных печей, и незначительный расход тиглей благодаря тому, что наружная их поверхность не находится под действием раскаленных газов и не подвергается активному окислению.

Если принять стоимость плавки 1 т металла в индукционной печи за 1, то в электрических тигельных печах сопротивления она составит 2,5, а в топливных мазутных печах 8.

Наибольшее распространение для плавки цинковых сплавов получают индукционные тигельные печи (печи без железного сердечника) промышленной частоты типа ИАТ и ИГТ. Индукционные тигельные печи промышленной частоты обоих типов имеют одинаковое устройство и отличаются в основном емкостью тигля и мощностью электрооборудования. Тигли печей типа ИАТ изготовлены путем набивки и спекания огнеупорных масс, печи типа ИГТ снабжены стальным тиглем. Ниже приведены технические данные печей типа ИАТ:

Индукционные канальные печи (печи с железным сердечником) применяют в цехах заготовительного литья для выплавки первичного цинка и сплавов на его основе. Указанные печи целесообразно применять при наличии шихты, состоящей в основном из катодного или первичного чушкового цинка, а также в тех случаях, когда к выплавляемому металлу и получаемым из него отливкам предъявляются высокие требования, в частности по газонасыщенности и по неметаллическим включениям.

Индукционные канальные печи по сравнению с индукционными тигельными печами имеют более высокий к.п.д. и, следовательно, более низкий удельный расход электроэнергии, а также более высокий коэффициент мощности. Они предназначены для непрерывного режима работы. Особенностью индукционных печей этого типа является сложность перевода их с плавки одного сплава на другой, что связано с необходимостью замены металла в канале новым. По этой причине рекомендуется применять канальные печи для плавки цинка или его сплавов постоянного химического состава. Ниже приведены основные характеристики индукционных канальных печей типа ИЦ, ИЦК, ИЛК для плавки и выдержки цинка и сплавов на его основе:


Конструктивно канальные печи представляют собой футерованную ванну, заключенную в кожух и снабженную одной или несколькими индукционными единицами. Рассмотрим стационарную индукционную печь с насосом для переплавки катодного цинка емкостью 20 т. Печь имеет шесть однофазных трансформаторов, соединенных в две независимые параллельные трехфазные группы и подключенных к трехфазной сети. Обе группы могут быть соединены между собой и будут подавать к печи 100% мощности (или 50% при включении только одной группы). Печь имеет 2 камеры: плавильную и разливочную. Камеры разделены стенкой, в которой вблизи дна сделан проем. Через проем чистый цинк стекает из плавильной камеры в разливочную, откуда и выкачивается насосом. Все примеси и неметаллические включения при этом остаются в плавильной камере. Насос представляет собой многолопастный пропеллер из чугуна, вращаемый электродвигателем.

Печь загружается сверху при помощи загрузочного устройства, представляющего собой наклоняющийся стол, на который краном укладывается цинк, подлежащий расплавлению. Затем маховичком или электродвигателем стол поворачивается на оси, и цинк загружается в ванну. В этот момент патрубок присоединяется к вентиляционной вытяжной системе; в результате отсоса пары цинка и печная атмосфера не попадают в цех. На случай попадания в расплавленный цинк влаги и внезапного парообразования предусмотрена заслонка, играющая роль предохранительного клапана. Для слива "болота" при ремонте футеровки служит отверстие, закрываемое при работе печи огнеупорной пробкой.

Чтобы полностью слить металл из каналов, печь слегка наклоняют в сторону сливного отверстия с помощью специального домкрата. Индукционная единица расположена так, что устья ее канала находятся по обе стороны перегородки, благодаря чему происходит подогрев металла в разливочной камере и улучшается перемешивание его в ванне.

Индукционные канальные печи наряду с тигельными электропечами сопротивления находят широкое применение в качестве раздаточных печей при литье под давлением, при заготовительном литье, жидкой штамповке и др. На рис. 56 показана раздаточная индукционная печь, устанавливаемая непосредственно у литейных машин.

Для производства мелкого цинкового литья различными способами применяют стационарные индукционные канальные печи емкостью 200-400 кг. Расход электрической энергии на плавку и перегрев цинка до температуры 480 С, включая работу всех вспомогательных устройств, составляет 95-120 кВт. ч/т.

Администрация Общая оценка статьи: Опубликовано: 2012.08.17

Цинк является тяжелым легкоплавким металлом; Тпл = 420 °С, р = 7,13 кг/дм3. Низкая температура кипения цинка (*кип = 907 °С) ограничивает допустимую температуру металла при плавке всех сплавов, в которые он входит. Энтальпия цинка при 500 °С (около 300 кДж/кг) в три раза ниже, чем энтальпия расплавленного алюминия. Удельное электрическое сопротивление расплава цинка 0,35-10~6 Омм.

При низких температурах на воздухе цинк окисляется, образуя плотную защитную пленку из Zn03* 3Zn(OH)2. Однако в плавильных печах цинк окисляется по реакциям:
2Zn + 02 = 2ZnO, Zn + H20 = ZnO + H2, Zn + C02 = ZnO + CO.

Для защиты от окисления можно вести плавку в защитной или нейтральной атмосфере, например в среде азота. Однако на практике в большинстве случаев оказывается достаточным не допускать перегрева металла выше температуры 480 °С, при которой начинается интенсивное окисление и насыщение газами цинка. При данной температуре цинк и его сплавы не оказывают заметного влияния на огнеупорную футеровку печи и чугунный или стальной тигель. Повышение температуры приводит к растворению железа тигля в расплаве цинка.

Печи для плавки цинковых сплавов

Учитывая низкую температуру плавления и кипения цинка, плавку цинковых сплавов ведут обычно в тигельных печах, нагреваемых путем сжигания топлива или использования электрического сопротивления и индукции. В дуговых печах плавить цинковые сплавы не следует, так как неизбежный локальный перегрев металла вблизи горения дуги приводит к интенсивному испарению и окислению цинка. Индукционные канальные печи используются для плавки цинковых сплавов. На КамАЗе сплав ЦАМ10-5 для литья под давлением выплавляли в трех индукционных канальных печах емкостью по 2 т с нейтральной футеровкой. Однако перегрев металла в канале приводит к неустойчивости электрического режима плавки (так называемой цинковой пульсации) и принуждает ограничивать мощность, передаваемую в печь.

Технология плавки

Основную часть шихты обычно составляют сплавы цинковые литейные в чушках, свой возврат и лом цинковых сплавов. В качестве покровных флюсов используют смесь хлоридов кальция, калия и натрия, хлористый аммоний или криолит. Для подшихтовки используют первичный алюминий в чушках, катодную медь и магний металлический. Все компоненты шихты должны быть очищены от масел, влаги и других включений. Плавку ведут, не допуская перегрева ванны выше 480 °С. По результатам экспресс-анализа проводят корректировку химического состава.
Для ввода магния используют стальной колокольчик. При получении заданного химического состава металл перегревают до 440…450°С и переливают в ковш, нагретый до той же температуры. В ковше под вытяжным зонтом производят рафинирование расплава таблетками комплексного дегазатора «Дегазер», в составе которых 87% гексахлорэтана, 12,7% NaCl, 0,3% ультрамарина. Рафинирование можно проводить также отстаиванием, продувкой инертными газами и фильтрацией.

© 2024 sun-breeze.ru
Новые идеи бизнеса - Животные и растения. Заработок в интернете. Автобизнес