Что такое цветные сплавы. Цветные металлы и их применение

Многие цветные металлы и их сплавы обладают рядом ценных ка­честв: хорошей пластичностью, вязкостью, высокой электропровод­ностью и теплопроводностью, коррозионной стойкостью и др. Благо­даря этим качествам цветные металлы и сплавы наряду с пластмассами в авиационной, электротехнической и радиотехнической промышлен­ности являются основными материалами. Из цветных металлов в чистом виде и в виде сплавов широко исполь­зуются медь, свинец, алюминий, магний, цинк.

4.1. Алюминий и его сплавы

Алюминий - легкий металл серебристо-белого цвета, плотность 2,7 г/см 3 , температура плавления 660° С. Механические свойства алю­миния невысокие, поэтому в качестве конструкционного материала применяется редко.

Алюминиевый сплав характеризуется высокой пластичностью, хорошо штампуется, легко прокатывается и прессуется, хорошо сва­ривается газовой и контактной сваркой, литейные свойства его низкие, обрабатываемость резанием плохая.

Важнейшим свойством алюминия является устойчивость против кор­розии благодаря образованию на его поверхности прочной защитной пленки - окиси алюминия.

Алюминий обладает высокой электро- и теплопроводностью (но не­сколько худшей, чем медь), поэтому наибольшее применение он нашел в электротехнической промышленности для изготовления проводов, кабелей, обмоток и т. п. Кроме этого, алюминий используется в хими­ческой промышленности, в приборостроении, а также для получения алюминиевых сплавов.

Основная часть алюминия используется для изготовления сплавов, которые можно разделить на две группы: деформируемые и литейные.

Деформируемые алюминиевые сплавы срав­нительно легко обрабатываются в горячем и холодном состоянии (про­каткой, прессованием, волочением, ковкой, штамповкой и др.). Из них изготовляют прутки, листы, проволоку, прессованные профили, по­ковки и т. д.

Деформируемые алюминиевые сплавы делятся на неупрочняемые и упрочняемые термической обработкой.

К неупрочняемым термической обработкой относят сплавы алю­миния с марганцем - АМц и алюминия с магнием - АМг, АМгЗ, АМг5, АМг6. Эти сплавы обладают высокой пластичностью, коррозионной стойкостью, хорошо свариваются и штампуются, но имеют невысокую прочность, которую можно повысить нагартовкой; из них изготовляет бензиновые баки, проволоку, заклепки и другие детали путем гибки и глубокой вытяжки, а также сварные резервуары для жидкостей и газов.

К деформируемым алюминиевым сплавам относятся дюралюмины - это сплавы, имеющие сложный химический состав, основу которого составляют алюминий, медь и магний; для повышения коррозионной стойкости добавляют марганец. Дюралюми­ны характеризуются небольшим удельным весом, высокой прочностью, достаточной твердостью и вязкостью; для повышения механических свойств их подвергают термической обработке.


Дюралюмины не обладают достаточной стойкостью против корро­зии, поэтому их подвергают плакированию (покрытие поверхности) тонким слоем алюминия.

К деформируемым алюминиевым сплавам относятся также сплавы АК2, АК4, АК6, АК8, в состав которых входят, кроме алюминия, медь, марганец, магний, кремний и в небольшом количестве никель. Из этих сплавов ковкой и штамповкой изготовляют крупные фасонные и высоконагруженные детали - поршни, лопасти винтов, крыльчатки насосов и т. д.

Высокопрочные алюминиевые сплавы обла­дают более высокой прочностью, чем дюралюмины повышенной проч­ности. Основу этих сплавов составляют цинк, медь, магний. Наиболее широко применяется сплав В95, прочность его после термической работки выше, а пластичность и коррозионная стойкость ниже, чем у дюралюмина Д16, хорошо обрабатывается резанием и поддается точечной сварке. Из сплава В95 изготовляют высоконагруженные эле-менты конструкции - детали каркасов, обшивку и т. д.

Ли т ейные алюминиевые сплавы применяются при производстве деталей методом литья. Такие сплавы обладают высокой жидкотекучестью, позволяющей получать тонкостенные, плотные отливки со сравнительно малой усадкой, без трещин, с высокой прочностью, коррозионной стойкостью, тепло- и электропроводностью, хорошей обрабатываемостью резанием.

Наибольшее распространение получили литейные сплавы алюминия с кремнием - АЛ2, АЛ4, АЛ9, называемые силуминами. Они обладают высокой жидкотекучестью, хорошей герметичностью, достаточно высокой прочностью, хорошо обрабатываются резанием, хорошо свариваются, сопротивляются коррозии и при изготовлении отливовок не дают горячих трещин. Сплав АЛ2 применяется для изготовлений деталей агрегатов, приборов, тонкостенных деталей сложной формы при литье в землю; сплав АЛ4 - для изготовления высоконагружен­ных деталей ответственного назначения; сплав АЛ9 - для изготовле­ния деталей средней нагруженности, но сложной конфигурации, а также для деталей, подвергающихся сварке. Недостатком сплава АЛ9 является склонность к газовой пористости.

Сплавы на основе алюминия и м а г н и я обладают наиболее высокой коррозионной стойкостью и более высокими механическими свойствами после термической обработки по сравне­нию с другими алюминиевыми сплавами, но литейные свойства их низ­кие. Наиболее распространены марки АЛ8 и А13. Из них изготовляют подверженные коррозионным воздействиям детали (для морских судов), а также детали, работающие при высоких температурах (головки ци­линдров мощных двигателей воздушного охлаждения).

Сплавы на основе алюминия и меди (АЛ7, АЛ12, АЛ19) обладают невысокими литейными свойствами и понижен­ной коррозионной стойкостью, но высокими механическими свойства­ми. Эти сплавы применяются для изготовления отливок несложной формы, работающих с большими напряжениями (АЛ7).

Сплавы на основе алюминия, меди и крем­ния характеризуются хорошими литейными свойствами, но коррозионная стойкость их невысокая. Эти сплавы широко применяют для изготовления отливок корпусов, арматуры и мелких деталей (сплав АЛЗ), отливок ответственных деталей, обладающих повышенной теплоустойчивостью и твердостью (сплав АЛ4), отливок карбюраторов арматуры двигателей (сплав АЛ6).

К сплавам на основе алюминия, цинка и кремния относится сплавы АЛ 11 (цинковый силумин), обладающий высокими литейными свойствами, а для повышения механических свойств подвергающийся модифицированию; плотность его сравнительно высокая - 2,9 г/см 3 . Из этого сплава изготовляют отливки сложной конфигурации - кар­теры, блоки двигателей.

К жаропрочным сплавам относится литой сплав АЛ1, предназначенный для изготовления головок цилиндров, поршней, работающих при высоких температурах - до 300° С.

4.2. Медь и ее сплавы

Медь по своему значению в машиностроении является наиболее цен­ным техническим материалом. Она хорошо сплавляется с большинст­вом металлов. Медь в чистом виде имеет красный цвет; чем больше в ней примесей, тем грубее и темнее излом. Температура плавления ме­ди 1083° С, плотность 8,92 г/см 3 .

Медь хорошо проводит электричество и тепло, уступая в этом от­ношении только серебру, ее используют для изготовления электричес­ких проводов, деталей электрооборудования, холодильных установок и т. д.; отличается хорошей коррозионной стойкостью, поэтому широ­ко применяется в химическом машиностроении и теплотехнике. Медь- очень вязкий металл, трудно поддается обработке резанием, так как стружка налипает на режущий инструмент. Для изготовления деталей машин чистая медь почти не применяется из-за низкой механической прочности.

В зависимости от чистоты предусмотрено пять марок меди: МО, М1, М2, МЗ, М4. В наиболее чистой меди (марка, МО) общее ко­личество примесей не превышает 0,1 и 0,05%. Наибольшее количество примесей (до 1%) содержит медь М4.

Медь МО (электролитическая) предназначается для изготовления проводников тока и сплавов высокой чистоты, МЗ - для проката и литейных медных сплавов (кроме бронзы), а медь М4 - для литей­ных бронз и паяния.

Значительная часть меди используется для изготовления сплавов на медной основе: латуни, бронзы, медно-никелевых сплавов. Эти сплавы прочнее чистой меди, их часто применяют в технике.

Латунь представляет собой сплав меди с цинком. Процентное содержание цинка в сплаве может колебаться в широких пределах и оказывает влияние как на механические свойства, так и на цвет лату­ни. С увеличением содержания цинка до 45% механические свойства латуни улучшаются, предел прочности возрастает до 32-65 кг/мм 2 , а относительное удлинение - до 65%. Температура плавления лату­ни составляет 800-1099° С. Чем больше в латуни цинка, тем ниже температура ее плавления.

В состав латуней, кроме меди и цинка, вводят алюминий, никель, железо, марганец, олово и кремний. Такие латуни называются специ­альными; эти добавки сообщают сплавам латуни повышенную проч­ность, твердость, антикоррозионную стойкость, улучшают литейные свойства.

Приняты следующие буквенные обозначения: Л-латунь, С - свинец, А - алюминий, Ж - железо, Н -никель, Мц - марганец, О - олово, К - кремний. Цифрами обозначается среднее процентное содержание меди; например в латуни Л96содержится 96% меди; в латуни ЛО62-1 содержится 62 % меди и примерно 1% олова, остальное цинк.

Свинцовистые латуни ЛС59-1, ЛС60-1, ЛС63-3, ЛС64-2, ЛС74-3 обладают высокими механическими свойствами, хорошо обрабатыва­ются резанием и штампуются; ЛС62-1, ЛС70-1 обладают высокими антикоррозионными свойствами в морской воде, хорошо обрабатыва­ются в горячем состоянии. Эти латуни находят широкое применение в судостроении.

Бронзы представляют собой сплавы меди с любым другим ме­таллом - свинцом, алюминием, кремнием, оловом, марганцем, ни­келем, железом, кроме цинка.

Бронзы обладают хорошими литейными и антифрикционными свойствами, высокой прочностью и твердостью, коррозионной стой­костью и хорошо обрабатываются резанием; при небольшом содержа­нии легирующих элементов бронзы обрабатываются давлением.

Маркировка бронз та же, что и для латуней: буквы Бр. - бронза, дальше начальные буквы названий тех основных элементов, кото­рые входят в состав сплава, а цифры, стоящие за буквами, соответст­венно обозначают их процентное содержание в бронзе. Например, Бр.ОФ6 -4 обозначает марку оловянисто-фосфористой бронзы, со­держащей 6-7% олова и около 4% фосфора. Фосфористая бронза применяется для изготовления вкладышей подшипников, червячных колес, а также деталей, находящихся в соприкосновении с морской водой.

Бронза Бр.ОЦС 6-6-3 применяется для изготовления машинной, водяной и паровой арматуры, а также гаек, втулок, поршней и т. д.

4.3. Магний и его сплавы

Магний представляет собой легкий металл серебристого цвета, плотность его 1,74 г/см 3 , температура плавления 650° С. При температу­ре, несколько превышающей температуру плавления, легко воспламе­няется и горит ярко-белым пламенем.

В связи с малой прочностью и слабой стойкостью против коррозии магний в качестве конструкционного материала не применяется, в основном он используется для получения магниевых сплавов.

Магниевые сплавы являются весьма легкими конструкционными материалами, поэтому их широко применяют в авиационной и других отраслях промышленности.

По технологическому признаку магниевые сплавы делятся на де­формируемые и литейные.

Деформируемые магниевые сплавы МА1, МА2, МАЗ, МА5, МА8 применяют для изготовления полуфабрикатов - прутков, полос, труб, листов и т. д., а также штамповок и поковок.

Литейные магниевые сплавы нашли широкое применение для производства фасонного литья. Плотность этих сплавов составляет 1,75-1,83 г/см 3 , они хорошо обрабатываются резанием, но литейные свойства их ниже литейных свойств алюминиевых спла­вов.

К недостаткам литейных магниевых сплавов следует отнести пониженную коррозионную стойкость во влажной среде, поэтому литейные,как и деформируемые магниевые сплавы, защищают оксидными пленками и лакокрасочными покрытиями. Марки литейных магниевых сплавов: МЛ1, МЛ2, МЛЗ, МЛ4, МЛ5, МЛ6.

Маркировка магниевых сплавов состоит из буквы, обознчающей соответствующий сплав, буквы, указывающей способ получения (А-для деформируемых, Л - для литейных) и цифры, обозначающей порядковый номер сплава.

4.4.Титановые сплавы

Температура плавления титана 1660° С, относительная плотность 4,5 г/см 3 . С углеродом титан образует очень твердые карбиды. Титан удовлетворительно куется, прокатывается и прессуется, обладает высокой стойкостью против коррозии в пресной и морской воде, также в некоторых кислотах.

Наибольшее значение имеют сплавы титана с хромом, алюминием, (в небольшом количестве) при малом содержании углерода (десятые доли процента). Например сплав ВТ2, содержащий 1-2% алюминия и 2-3% хрома, а также сплав ВТ5, содержащий 5% алю­миния, имеют высокую прочность и пластичность, применяются для изготовления листового материала. Сплав ВТЗ, содержащий 5% алю­миния, 3% хрома, имеет жаропрочность до 400° С. Многие сплавы ти­тана подвергаются термической обработке, чем достигается еще большая прочность, соответствующая прочности высоколегированных сталей.

И их сплавы характеризуются высо­кой сопротивляемостью коррозии, большой пластичностью, вязкостью, хорошей обрабатываемостью, высокой электро - и теплопроводностью.

34. Назвать цветные металлы.

К цветным металлам, наиболее широко применяемым в промышленности, относятся медь, алюминий, хром, олово, цинк, магний, вольфрам, молибден, никель, свинец, титан, серебро, золото, платина и др.

35. Назвать сплавы цветных металлов.

К сплавам цветных металлов относятся: медные сплавы (латунь, бронза и др.); алюминиевые сплавы (дюралюми­ний, силумин и др.); магниевые сплавы; титановые сплавы; евинцово-оловянистые сплавы и др.

36. Что такое баббит?

Баббит - это легкоплавкий подшипниковый сплав (ГОСТ 1320-55, ГОСТ 1209-59) с содержанием 80-90% олова, 4-13% сурьмы, 3-6% меди, а также свинца, каль­ция, никеля, мышьяка, кадмия, теллура, железа и др. Температура плавления 232-350° С. Температура литья 450-550° С.

Баббиты подразделяются на высокооловянистые, обо­значаемые буквой Б, малоолов ян истые - БН, БТ и без - оловян истые, обозначаемые Б К (свинцово-кальцие-натрие - вые сплавы).

Баббиты отличаклся высокой износостойкостью, при - рабатываемостью, пластичностью, малым коэффициентом трения и хорошей обрабатываемостью.

37. Что такое латунь?

Латунь - это сплав меди (45-80%) с цинком (от 3 до 50%), а также с другими элементами: алюминием, оловом, свинцом, железом, никелем и др. Плотность ла­туни 8,3-8,5 г/см3, температура плавления 890- 1000° С

В зависимости от технологических свойств (ГОСТ 17711 - 72 и ГОСТ 15527-70) латуни подразделяются на литейные и обрабатываемые давлением. Они обладают хо­рошей прочностью, пласіичностыо, антифрикционными и антикоррозионными свойствами.

Высокими механическими, антикоррозионными и ли­тейными свойствами обладает томпак - латунь, содержа­щая не более 22% цинка и не менее 61 % меди.

Латунь обозначается буквой Л. В маркировке латуни буквы обозначают химические элементы, входящие в сплав, первые две цифры, стоящие за буквами, указывают содержа­ние меди, а цифры, отделенные дефисом,- среднее содер­жание легирующих элементов в процентах в порядке, соот­ветствующем буквпм Так, латунь марки ЛК. С80-3-3 со­держит 79-81% меди, 10,5-16,5% цинка, 2,5-4,5% крем­ния, 2-4% свинца.

Латунь широко применяется в промышленности.

38. Что такое бронза?

Бронза - это сплав меди с одним или несколькими хи­мическими элементами: оловом, свинцом, цинком, никелем, фосфором, кремнием, марганцем, алюминием, железом. Пло­тность бронзы 7,5-9,3 г/см3, температура плавления 940- 1093° С. Используется в качестве материала для деталей машин, арматуры, подвергающихся трению, атмосферному воздействию, а также действию слабых кислот и т. д.

Характеризуются бронзы высокими механическими, ли­тейными, антифрикционными и антикоррозионными свой­ствами.

В зависимости от состава различают бронзы: оловяни - стые, применяемые для вкладышей подшипников и арма­туры; алюминиевые (6-11,5% Аі), применяемые для фа­сонного литья и лент; кремнистые (1-3,5% кремния); марганцовистые (4,5-5,5% марганца); свинцовые (30- 60% свинца), применяемые для подшипников скольжения; бериллиевые (2% бериллия), применяемые для пружин и износостойких деталей; медно-титановые (5% титана) и другие. 129

Бронзы хорошо обрабатываются и отливаются.

Обозначаются они буквами Бр и другими буквами, ана­логично латуни, указывающими элементы, входящие в их состав, и цифрами, показывающими соответственно сред­нее содержание этих элементов в процентах. Так, бронза марки БрАЖМц 10-3-1,5содержит9,5-10,5% алюминия, 2,5-3,5% железа, 1-2% марганца, остальное - медь.

39. Назвать благородные металлы.

В группу благородных металлов входят золото, пла­тина, серебро.

40. Назвать металл, который при нормальной ком­натной температуре находится в жидком состоянии.

При нормальной комнатной температуре в жидком состоянии находится ртуть. Плотность ртути - 13,5 г/см3, температура кипения - 357° С, затвердевания - 38,9° С.

41. Что ты знаешь об олове?

Олово (Sn) получают из оловянной руды, называемой касситеритом (Su02). Олово имеет серебристую окраску. Плотность - 7,3 г/см3, температура плавления 232° С. Это мягкий, пластичный и легко поддающийся лптыо металл. Плохо сохраняется при низкой температуре, л їм тваясь при такой температуре длительное время, переходім в свою разновидность - серое олово, которое при непосредствен­ном соприкосновении с белым оловом, вызывает ею раз­ложение.

Характерным для чистого олона является xpytт при изгибе и разломе.

Олово находит широкое применение при лужении, пайке как компонент технических сплавов для подшипни­ков, припоев и других целей.

42. Что ты знаешь о меди?

Медь получают из медных руд, таких как хялькоперит (медный колчедан), борнит, халькозин (медный блеск), ковеллин, малахит и азурит. Дальнейшей чмскї ролитиче - ской обработкой черной меди получают чнпую медь. Цвет меди - красноватый. Плотность - Я,?) г/ем8, тем­пература плавления - 1083° С.

Медь хорошо поддается холодной пластической обра­ботке, штамповке, горячей ковке. Во время холодной пла­стической обработки несколько повышает < ною твердость. Отличается хорошей теплопроводностью и элект ропровод- ностью. Под влиянием влаги быстро окисляется, покры­ваясь зеленым налетом. Широко используется в электро­технической промышленности, для изготовления художе­ственных изделий, в гальванопластике и для металлопокры­тий. Медь входит также в состав многих сплавов.

Медь можно паять, сваривать с предварительным подо­гревом, под давлением.

43. Назвать металл, который имеет самую высокую тем­пературу плавления.

Металлом, который имеет самую высокую температуру плавления (3390° С), является вольфрам. Плотность вольф­рама равна плотности золота и составляет 19,3 г/см3.

Медь и ее сплавы. Медь имеет характерный красный цвет, который на матовых поверхностях приобретает розовый, приглушенный, мягкий оттенок. Полированная медь отличается более ярким цветом и блеском.

При добавлении меди в сплавы в больших количествах они также окрашиваются в теплые красноватые тона, например, бронза и томпак.

На основе меди изготовляют сплавы, имеющие красновато-желтый цвет, близко напоминающий золото.

Медь является мягким и тягучим металлом. Она легко обрабатывается давлением и волочением. Из меди легко штамповать, дифовать и чеканить, так как она может принимать самую разнообразную форму и допускает выколотку высокого рельефа.

Медь хорошо прокатывается. Из нее изготовляют тончайшие листы и ленты (фольга), толщина которых составляет не более 0,05 мм, а также различные трубки, прутки и проволоку, диаметр которой может быть доведен до 0,02 мм. Но из-за своей вязкости медь плохо пилится напильником, задирается и быстро забивает напильник. Обработка чистой меди на режущих станках также довольно затруднительна – она плохо точится, фрезеруется и сверлится.

Шлифовке и полировке медь подвергается хорошо, но из-за малой твердости детали из полированной меди быстро теряют блеск. Удельный вес меди 8,94, удлинение 45 – 50 процентов.

Медь обладает высокой теплопроводностью и электропроводностью. Температура ее плавления 1083°С, температура кипения 2305 – 2310°С.

Отливается медь плохо и даже при высокой температуре остается густой и плохо заполняет форму. Кроме того, расплавленная медь поглощает газы, и отливки получаются пористыми.

В сухом воздухе медь не окисляется. Окисляется она при нагреве более 180°С и под действием щелочей, воды и кислот.

В крепкой азотной кислоте медь окисляется особенно энергично. На открытом воздухе изделия из красной меди быстро покрываются пленкой из окислов меди зеленого цвета и сернистых соединений меди черного цвета. Эта пленка защищает ее от дальнейшей коррозии в глубину.

Из примесей в меди присутствуют кислород, висмут, цинк, олово, сера, никель, железо, мышьяк, свинец, сурьма. Наиболее вредным из этих примесей является висмут, который вызывает красноломкость меди в интевале 400 – 600°С. При этой температуре она становится хрупкой и непригодной для штамповки, прокатки и других методов обработки. При дальнейшем нагреве хрупкость исчезает.

Чистая, или красная медь для изготовления художественных изделий применяется довольно часто, однако не так широко, как ее сплавы – латунь и бронза.

Применяют чистую медь из-за ее высокой пластичности и вязкости, позволяющей из листов небольшой толщины (0,9 – 1,3 мм) получать методом выколотки сложные объемные формы. Медь отличается высокой стойкостью против коррозии.

Изделия из чистой меди хорошо сохраняются на открытом воздухе без антикоррозийных покрытий. Эти свойства сделали ее основным материалом для дифовочных работ при изготовлении крупных скульптурных и орнаментальных композиций.

Кроме дифовочных работ, чистая медь применяется для штамповки очень высоких и сложных рельефов и орнаментов, для которых латунь оказывается недостаточно пластичной.

Красная медь является незаменимым материалом в области филигранных работ. Проволока из красной меди, которую применяют для филигранных работ, в отожженном состоянии становится мягкой и пластичной. Из нее легко можно вить шнуры и выгибать сложные элементы орнамента. Она может быть изготовлена любой толщины и хорошо спаивается сканным серебряным припоем, хорошо поддается позолоте и серебрению.

Благодаря тугоплавкости и теплопроводности, а также определенным коэффициентам расширения при нагреве красную медь применяют для филигранных или чеканных работ с последующим их эмалированием. При остывании изделия эмаль хорошо держится на медном изделии, не отскакивает и не трескается.

Аноды из красной меди высших марок являются основным материалом для производства художественных гальванопластических работ, а также для нанесения гальваническим путем подслоев меди при никелировании и хромировании стальных изделий, так как никель и хром, осажденные непосредственно на стальную поверхность, держатся непрочно.

Высокая электропроводность меди, которая уступает только серебру, послужила причиной широкого применения ее для изготовления электропроводов, кабелей и т.д. Незаменима медь и для изготовления сердечников для паяльников.

При изготовлении твердых припоев (медных, серебряных, золотых), которые применяют для пайки разнообразных художественных изделий из металла, начиная от ювелирных изделий и кончая крупными декоративными предметами, медь является основным компонентом.

Наряду с золотом и селеном медь применяют для изготовления красного стекла, смальты и эмали.

Медь хорошо растворяется в азотной кислоте, серной, разбавленной соляной кислотах. Она является основой таких сплавов, как латунь, бронза, нейзильбер, мельхиор.

Латунь – сплав меди с цинком (до 45 процентов), часто с добавлением алюминия, железа, марганца, свинца, никеля и других сплавов (в сумме до 10 процентов).

Большинство латуней имеет красивый золотисто-желтый цвет. Художественные латунные изделия, если их покрыть специальными бесцветными или слабо окрашенными спиртовыми лаками или нитролаками, приобретают и надолго сохраняют вид и блеск золота.

Латуни применяются для изготовления уникальных декоративных предметов, а также для некоторых ювелирных изделий с последующим золочением или серебрением.

Сплав хорошо обрабатывается на режущих станках, полируется, надолго сохраняет полированную поверхность, хорошо сваривается, паяется как мягкими, так и твердыми припоями. Латунь хорошо чеканится, штампуется, прокатывается, легко и прочно покрывается гальваническими покрытиями – никелем, золотом, серебром. Она хорошо принимает химические оксидировки и может быть тонирована в любой цвет. Температура плавления латуни 980 – 1000°С.

Большинство латуней плохо отливаются. Однако имеются специальные марки литейных латуней, которые благодаря примеси алюминия имеют хорошие литейные свойства и отличаются от других латуней высокой коррозионной стойкостью.

В отличие от чистой меди латуни более прочны и тверды, а некоторые из них, содержащие примесь цинка, не уступают чистой меди в пластичности. Кроме того, латуни значительно дешевле меди и красивее по цвету, чем красная медь.

Применяются для изготовления художественной посуды, нагрудных спортивных и юбилейных значков, дешевых ювелирных изделий.

Томпак хорошо обрабатывается в холодном состоянии – штампуется, тянется в проволоку, приближаясь в этом отношении к чистой меди. На открытом воздухе изделия из томпака постепенно темнеют, покрываясь оксидной пленкой.

Художественные изделия из латуни хорошо смотрятся в интерьерах теплых и сухих помещений. На открытом воздухе латунь быстро теряет свой блеск и золотистый цвет, покрывается окисными пленками, чернеет и утрачивает свои художественные качества.

Латунь выпускается в виде листов различной толщины, ленты, прутков проволоки и трубок.

Литейные латуни выпускаются в виде слитков (чушковая латунь). Латунь нельзя длительно хранить в холодных, не отапливаемых складах, так как от смены температуры, наличия влажности и других условий латунь разрушается.

С 18 века из латуни начали производить порошок для бронзирования художественных изделий из гипса, дерева и иных целей. Получали его путем механического измельчения тончайших латунных пластинок, предварительно прокатанных и расплющенных под паровым молотом. Порошок для бронзирования получают и способом восстановления раствора медного купороса металлическим железом. Полученную губчатую медную массу измельчают, промывают и сушат, затем придают бронзовый оттенок путем нагревания его с парафином в железных ящиках благодаря появлению цветов побежалости.

Латунь является одним из основных материалов для практического обучения чеканщиков и ювелиров. Маркируется она буквой Л и буквами, которые обозначают специально вводимые в сплав элементы. Эти элементы обозначают буквами: Ж – железо, К – кремний, Мц – марганец, Н – никель, С – свинец и т.д. После букв ставят цифры, указывающие процент меди и специальных элементов. Например, состав латуни ЛАЖМц 66-6-3-2 содержит меди – 66, алюминия – 6, железа – 3, марганца – 2 процента, остальное цинк.

Бронза – сплав на основе меди, в котором главными добавками являются олово 3 – 12 процентов, цинк, никель, свинец, марганец, фосфор и другие элементы.

Известна бронза очень давно, за несколько тысячелетий до нашей эры. В истории развития человеческого общества одна из эпох носит название "бронзового века". В эту эпоху человек впервые из медной и оловянной руды научился выплавлять бронзу и производить из нее предметы быта, оружие, различные украшения.

В Древнем Египте, Китае, Индии, в искусстве древних греков и римлян находят памятники искусства, сделанные из бронзы, например, бронзовые статуи.

В состав наиболее древних бронз, относящихся к бронзовому веку, входило около 88 процентов меди и 12 процентов олова. Античные бронзы содержали еще больше меди – до 90 процентов.

В древней Руси в 12 – 17 веках отливки производились из сплава, в который входила медь, олово, цинк и свинец. В 15 – 17 веках отливки делались из сплава красной меди, с оловом. С 18 века из желтой меди – бронзы с добавлением цинка. В конце 19 века широкое применение для художественного литья получила бронза с содержанием 4 процентов олова и 10 – 18 процентов цинка.

В Западной Европе для отливки памятников применяли бронзы, близкие к этому составу.

Французская бронза состояла из 82 процентов меди, 13,5 процентов цинка, 3 процентов олова, 1,5 процента свинца.

В настоящее время литье художественных изделий производится из специальной художественной бронзы.

Цвет бронзы с увеличением процентного содержания олова изменяется от красного при содержании в ней меди не менее 90 процентов в желтый при содержании меди не менее 85 процентов, в белый – при 50 процентах, в серо-стальной – при содержании меди менее 35 процентов.

Если в бронзе находится до 3 процентов олова, она очень пластична в холодном состоянии. Если олова содержится 5 процентов, бронза куется только в состоянии красного каления.

Начиная с 18 века появляется золоченая бронза. Из бронзы производили люстры, канделябры, торшеры, декоративные вазы в комбинации с граненым хрусталем, полированным камнем, и цветным стеклом.

Художественная бронза является материалом для литья памятников и монументальных скульптур. По своим цветовым качествам она одинаково хорошо смотрится и в помещении, и на открытом воздухе. Бронза исключительна долговечна, не подвергается атмосферным влияниям, устойчива против механических повреждений.

В настоящее время промышленность выпускает специальную безоловянистую бронзу. В составе этих сплавов нет олова, его заменяет алюминий, цинк, свинец, кремний, марганец, никель и другие элементы.

Такие бронзы отличаются рядом новых механических и технологических свойств, и во многих отношениях превосходят оловянистую бронзу. Например, марганцевая бронза отличается высокой жаропрочностью, а кремнистая бронза с добавкой никеля получает свойство закаливаться и по прочности не уступает стали, однако в художественной сфере они почти не применяются.

В художественной промышленности наибольшее применение имеют сплавы меди с 5 – 10 процентным содержанием олова благодаря их высоким литейным качествам, прочности, антикоррозийной стойкости и красивому желтоватому цвету. Сплав с 5 процентами олова называется монетной или медальной бронзой.

Маркируют бронзу буквами Бр с условными обозначениями и соответственно содержанием элементов, входящих в состав сплава. Например, бронза БрОН 10 – 4 состоит из 10 процентов олова, 4 процентов никеля, остальное медь.

В основном бронза применяется для художественного литья, изготовления сувениров, юбилейных значков, медалей, частей механизмов, работающих во влажной атмосфере, паре, морской воде.

Мельхиор – сплав меди с 30 процентами никеля, 0,8 процентами железа и 1 процентом марганца (иногда с 19 процентами никеля).

Мельхиор обладает красивым серебристым цветом и относится к числу декоративных сплавов, имитирующих серебро. Сплав очень пластичен, устойчив против атмосферной коррозии, легко обрабатывается – хорошо поддается чеканке, штампуется, режется, паяется, полируется. Применяется в основном для изготовления столовых принадлежностей и ювелирных изделий.

Нейзильбер – сплав меди с 20 процентами цинка и 13,5 – 16,5 процентами никеля. По внешнему виду напоминает серебро. Отличается хорошей пластичностью, тягучестью, повышенной прочностью, упругостью, и высокой коррозийной стойкостью.

Применяется в художественной промышленности и ювелирном деле.

Никель и его сплавы. Металлический никель был известен в Китае еще до нашей эры. Из особого никелевого сплава чеканились древнекитайские монеты. Известны и древнеперсидские монеты также сделанные из никелевого сплава. Первоначальное применение никеля было связано главным образом с ювелирным и монетным производством. Как химический элемент никель был открыт в 18 веке, однако в производстве художественных изделий он стал применяться только в самом конце 18 века и начале 19 вв.

Никель – металл серебристо-белого цвета, с сильным блеском, не тускнеющий на воздухе. Удельный вес 8,8; температура плавления 1455°С.

Кипит он при 3075°С. Никель обладает магнитными свойствами.

При температуре 360°С магнитные свойства исчезают.

Чистый никель не окисляется под влиянием атмосферного воздуха. В разбавленных серной и соляных кислотах он растворяется медленно, а в азотной кислоте быстро. В концентрированной азотной кислоте он пассивен.

Никель обладает большой химической стойкостью, тугоплавкостью, прочностью, пластичностью. Принадлежит к малораспространенным в природе металлам и в самородном состоянии в земной коре не встречается. Однако его обнаружили в метеоритах.

Чистый никель обозначается марками Н-1, Н-2, Н-3, Н-4.

В никеле всегда находятся различные примеси: кобальт, железо, кремний, марганец, медь, которые присутствуют в нем в небольших количествах. Они не считаются вредными примесями, так как не оказывают на его механические свойства плохих воздействий. К вредным примесям никеля относят углерод, серу и кислород. Они ухудшают его пластичность и крепость. Углерод допустим в пределах до 0,3 – 0,4 процента. При более высоком содержании он начинает выделяться в виде графитовых включений и делает невозможной прокатку никеля в листы.

Присутствие серы выше 0,02 процентов вызывает красноломкость никеля при температуре 625°С. Поэтому никель с повышенным содержанием серы не пригоден к горячей штамповке. Чистый никель хорошо штампуется, прокатывается и тянется в проволоку, но плохо отливается, так как в расплавленном состоянии сильно поглощает газы и отливки получаются пористыми.

Никель хорошо полируется, тонируется и отделывается.

В области художественного производства никель применяется главным образом для никелирования декоративных и антикоррозийных покрытий, а также для приготовления различных сплавов, заменяющих серебро в посудном, галантерейном, ювелирном производствах и в монетном деле. Значительная часть добываемого никеля идет на легирование нержавеющих сталей, которые применяются в художественной промышленности.

На никелевой основе изготовляется значительное количество специальных сплавов, которые применяются в различных отраслях хозяйства, – нихром, константин, никелин, алюмель, хромель и др. Все эти сплавы применяются для приготовления высокоомной проволоки, сплав инвар, который состоит из 36 процентов никеля и 64 процентов железа, применяется для эталонных линейных мер, так как его коэффициент линейного расширения равен всего 0,0000001.

Сплав платинит, содержащий 50 процентов никеля и 50 железа очень близок к коэффициенту стекла, поэтому применяется для выделки оправ к стеклам в тех случаях, если изделие подвергается нагреву. Иногда детали из платинита запаивают в стекло. Свое название "платинит" получил за внешнее сходство с платиной.

В ювелирном, галантерейном и других областях художественной промышленности применяются сплавы, имитирующие серебро. Наиболее древним из них является пактонг – белая китайская медь, в состав которой входит 40,4 процента меди, 25,4 цинка, 2,6 железа и 31,6 никеля.

В древней Персии применялся сплав для чеканки монет, состоявший из 78 процентов меди, 20 процентов никеля, 1,0 процента железа, 0,5 процентов кобальта и других примесей.

Цинк. Сплавы цинка известны с глубокой древности. Их изготовляли в Древнем Египте, Китае, Индии до нашей эры и ввозили в Европу. Однако в чистом виде цинк был получен в 15 веке и для производства художественных изделий начал применяться только с 18 века, а художественное литье из цинка – с 19 века.

Чистый цинк представляет собой белый металл с голубоватым оттенком. На воздухе покрывается плотным защитным слоем. Довольно хрупок, однако при нагревании до 110 – 150°С хорошо поддается обработке давлением. Температура плавления цинка 692,4°С, кипения – 1179 К, твердость по Бринеллю 300 – 350 Мн/м 2 , удельный вес литого цинка 6,9, катаного 7,2.

В холодном состоянии легко разбивается молотком, при нагреве до 150°С становится пластичным, легко куется, катается в тонкие листы и вытягивается в проволоку. При нагреве выше 150°С пластичность вновь исчезает, а при 250°С цинк становится настолько хрупким, что может быть измельчен в порошок.

При нагревании цинк сильно расширяется, сильнее, чем все другие металлы.

Плохо обрабатывается режущими инструментами, напильник забивается.

В чистом виде цинк применяется в полиграфической промышленности при изготовлении клише для печати, в химической промышленности для производства цинковых белил, благодаря коррозионной стойкости он применяется для покрытия стальных листов (цинкованное железо) и т.д.

В прикладном искусстве цинк применяется в чистом виде и в сплавах. Из листового цинка выполняется техникой дифовки и чеканки с последующей монтировкой крупные декоративные скульптуры, барельефы, и другие архитектурные украшения. Благодаря высокой жидкотекучести цинка из него выполняют тонкие ажурные работы, выплавлялись подсвечники, настенные бра, канделябры и др. Эти изделия тонировались под бронзу или золотились. Литьем исполнялись и круглые декоративные скульптуры, которые отливались по частям, а затем спаивались оловянно-свинцовом припоем.

В художественном деле применяют сплавы, содержащие цинк, например, латунь, нейзильбер.

Интерес представляют легкоплавкие цинковые сплавы для литья под давлением и в кокиле. Они высокопроизводительны и экономичны, благодаря малому износу форм. Эти сплавы применяются для литья различных деталей: эмблемы, марки на автомобилях, холодильниках и др.

Легкоплавкий цинковый сплав повышенной прочности состоит из 93 процентов цинка, 4 процентов алюминия и 3 процентов меди; сплав средней прочности состоит из 95 процентов цинка, 4 процентов алюминия и 1 процента меди. От растрескивания эти сплавы предохраняет 0,3 процента добавленного магния.

Цинк часто применяется в качестве гальванических покрытий для увеличения коррозийной стойкости изделий и в иных целях.

Алюминий – металл серебристо-белого цвета, мягкий, пластичный, хорошо тянется и прокатывается в холодном состоянии. Удельный вес 2,7 – он в три раза легче меди и в четыре раза легче серебра.

На воздухе покрывается оксидной пленкой, предохраняющей его от дальнейшей коррозии. Из-за постоянно присутствующей оксидной пленки алюминий трудно паять и сваривать, так как температура плавления окиси алюминия намного выше самого алюминия (температура ее плавления почти 2050°С). Температура плавления алюминия 660°С, он кипит при 1650°С. Алюминий легко растворяется в едких щелочах. Серная и азотная кислоты его медленно разъедают, в соляной кислоте он быстро растворяется, механической обработке – резанию поддается хорошо, легко тянется в проволоку и прокатывается в листы. Особенно тонкие листы (фольгу) получают прокаткой при 430°С.

Открыт этот металл в 1827 году и является самым распространенным металлом в природе, составляя около 7,5 процента всей земной коры. В количественном отношении уступает только кислороду (49,5 процента) и кремнию (25,7 процентов), однако до сих пор не найден в самородном состоянии. Он входит в состав глины, полевых шпатов, слюды и многих других минералов. Добывается из боксита – руды, представляющей собой глину, содержащую до 70 процентов окиси алюминия.

Чистый алюминий не обладает достаточными литейными свойствами, однако его сплавы, например силумин, имеют хорошие литейные свойства, жидкотекуч. Технический алюминий (различной степени чистоты от 96,5 процента до 99,7 процента) выпускается в виде листов, труб, фольги, уголка, полосы, таврика, прутков.

Прочность алюминия невелика, но при легировании его различными добавками прочность может быть значительно повышена. Основными компонентами в сплавах, которые существенно изменяют свойства алюминия, являются медь, кремний, магний, цинк, железо, никель, хром, марганец. Их добавляют для повышения прочности сплавов. В основном все множество алюминиевых сплавов делится на деформирующие славы для обработки их механическими способами и литейные сплавы, предназначенные для литья.

Художественные изделия из алюминиевых сплавов полируются до зеркального блеска, напоминающего никелированные поверхности. Они устойчивы и декоративны в полированном состоянии.

Чистый алюминий устойчив против коррозии, чего нельзя сказать о его сплавах.

Алюминий и его сплавы используют в художественной промышленности наряду с чугуном для крупных литых архитектурных деталей и скульптур, для украшения интерьеров. Кроме того, алюминий применяется и в ювелирном производстве, где стал заменять золото и серебро, а также в авиастроении, автостроении, судостроении. В виде чистого металла его используют для изготовления химической аппаратуры, электрических проводов, конденсаторов, чеканки по листу и т.д.

Свинец. На свежем разрезе этот металл синевато-серого цвета, быстро тускнеет на воздухе, покрываясь пленкой окиси. Его удельный вес 11,9; температура плавления 327°С. Его температура кипения 1525°С.

Свинец является наиболее мягким и вязким из всех металлов. Он легко прокатывается, штампуется, прессуется, а также хорошо отливается.

В сухом воздухе свинец не изменяется, но во влажном воздухе на его поверхности образуется пленка сначала окиси, а затем гидрата окиси, которая частично растворяется в воде.

Поэтому под переменным воздействием воздуха и воды свинец очень медленно, но разрушается. Свинец хорошо сопротивляется действию соляной кислоты и серных кислот, а в азотной кислоте он растворяется. Против едких щелочей свинец также не стоек.

Известен свинец с глубокой древности. Знали его египтяне, греки и другие народы.

Он легко выделяется из соединений и довольно широко распространен в природе. В самородном состоянии свинец встречается редко. Добывают свинец в основном из руды галенита или свинцового блеска.

Свинец издавна применялся в прикладном искусстве, а также для покрытия крыш и водосточных труб.

Изделия из свинца украшались различными орнаментами, изображением птиц и зверей. Особенно широко он применялся для соединения цветных стекол в готических витражах. Выделывали из свинца художественную посуду, гребни, ложки и т.д. Иногда из него отливали скульптуры, декоративные детали архитектуры, детали на оградах, воротах.

Для повышения блеска свинец употребляют как составную часть хрусталя, некоторых художественных эмалей и смальты. Однако сейчас он заменяется в этих производствах калием и иными элементами, не обладающие ядовитыми свойствами, как свинец.

Соли свинца и сам свинец ядовиты, поэтому использовать их для художественных целей нужно осторожно, выполняя правила охраны труда и техники безопасности.

Чистый свинец как материал для производства художественный изделий не применяется.

Используется он как составная часть легкоплавких сплавов, идущих на некоторые виды декоративного литья, а также для мягких оловянно-свинцовых припоев для пайки стальных и медных художественных изделий.

Олово известно было в античное время и применялось для чеканки монет и изготовления сосудов.

В природе олово находится в виде кислородного соединения (оловянного камня) и значительно реже в соединениях с железом и серой. Олово имеет серебристо-белый цвет, но темнее серебра. Его температура плавления 505, кипения – 2635 К, твердость по Бринеллю 50 Мн/м 2 . На воздухе олово не окисляется, в воде окисляется очень медленно. Обладает хорошей коррозийной устойчивостью, благодаря появлению окисной пленки.

Используется для приготовления белой жести, т.е. луженой тонколистовой стали. При сильном охлаждении олово теряет металлические свойства и переходит в серый порошок – "серое олово". Это явление носит название "оловянной чумы" и происходит в связи с изменением кристаллической решетки. Изменения вызывают значительные увеличения объема, сопровождаемые сильными внутренними напряжениями, которые приводят к рассыпанию металла в порошок. Сначала "оловянная чума" появляется в виде отдельных серых пятен, распространяясь при дальнейшем охлаждении по всему предмету. Для того, чтобы остановить или предотвратить "оловянную чуму" нужно изделие нагреть выше 18°С.

Олово металл мягкий и вязкий, немного тверже свинца. В холодном состоянии прокатывается в самые тонкие листы, но проволока из него легко рвется.

Начиная с 16 века на Руси олово применялось для тонкого художественного литья, которое употреблялось для внутренней отделки зданий, а также для изготовления различных бытовых вещей.

Ажурное оловянное литье применялось в качестве украшения иконостасов, дверей, подвесных и выносных фонарей и т.д.

В настоящее время олово в художественной промышленности не применяется. Его используют для сплавов с медью, со свинцом, изготовляя припои, которые применяют для изготовления художественных изделий из черных и цветных металлов и сплавов.

В сплавах с сурьмой, свинцом, висмутом, ртутью, кадмием и другими легкоплавкими металлами олово применятся для мелкого художественного литья. Из олова получают двусернистое олово, которое представляет собой блестящую массу, похожую по цвету на золото. Это вещество называют "сусальным золотом" или "серным золотом" и в виде тончайших листков или порошка применяют для отделки под золото различных металлических, деревянных или гипсовых изделий.

Двусернистое олово очень стойко и надолго сохраняет блеск при применении его не только для внутренних художественных работ, но для наружных.

Кадмий – это тяжелый металл белого цвета, очень мягкий, вязкий и тягучий. При изгибе кадмиевого прутка слышно характерное потрескивание, похожее на потрескивание оловянного прутка.

По своим свойствам кадмий занимает среднее место между оловом и цинком. Открыт в первой половине 19 века. Температура плавления 321°С, температура кипения 773°С.

В чистом виде кадмий обладает высокой устойчивостью против коррозии и применяется в качестве электролитического покрытия – кадмирования.

Наиболее часто кадмируются стальные изделия – корабельная арматура и приборы для защиты от действия морской воды. В городской атмосфере с ее сернистыми газами, кадмиевые покрытия не пригодны из-за их слабой устойчивости против сернистых соединений.

Кадмиевые соли ядовиты, покрывать ими пищевую посуду нельзя. А потому используется как составная часть в сложных сплавах, входит в состав многих легкоплавких припоев в ювелирном деле.

Ртуть – единственный жидкий металл при обычной температуре. Температура плавления минус 39°С, температура кипения 357°С.

Металлическая ртуть, ее пары и все соединения очень ядовиты. А потому работая с ней, нужно соблюдать осторожность, работы производить только в вытяжных шкафах.

Ртуть взаимодействует со слабо разбавленной азотной кислотой и концентрированной серной кислотой, не взаимодействует с соляной и щелочами. Обладает способностью растворять в себе многие металлы, образуя жидкие и твердые сплавы, которые называют амальгамами.

При этом порой получаются химические соединения ртути с металлами. Особенно легко образуется амальгама золота, золотые изделия нужно оберегать от соприкосновения с ртутью.

Ювелиры использую ртуть для получения золотой или серебряной амальгамы при горячем золочении и серебрении.

В горном деле ртуть используют для отделения золота от неметаллических примесей. Она используется в химической промышленности, электротехнике, светотехнике, приборостроении – для производства ртутных выпрямителей, манометров, ламп дневного света и т.д.

В природе ртуть встречается очень редко в виде вкрапления в горные породы. Главным образом она находится в виде ярко-красного сульфида ртути или киновари, из которой металлическую ртуть получают путем обжига руды.

Ртуть выделяется в виде паров и конденсируется в охлажденном приемнике.

Хром – металл светло-серого цвета. Открыт в конце 18 века, однако как металл, начал применяться с конца 19 века. Хром хорошо полируется и долго сохраняет зеркальный блеск. Температура плавления 1615°С, температура кипения 2200°С.

Хром – металл очень твердый и хрупкий, хорошо противостоит коррозии. Применяется в качестве присадки при получении легированных сталей и чугунов.

В художественном деле хром применяется для гальванических покрытий черных металлов. Хромированные изделия обладают красивым цветом и блеском.

В настоящее время хромирование приобрело очень широкое распространение. Хромируют детали автомашин, велосипедов, холодильников, часов и т.д.

Исключительная прочность хромовых покрытий, которые оказываются прочнее и тверже закаленной стали, позволяет применять гальваническое хромирование не только как декоративное и антикоррозийное, но и как очень стойкое покрытие против истирания. Окись хрома идет на приготовление полировальной пасты, кроме того различные соединения хрома дают разнообразные краски (зеленую, изумрудную, желтую и др.).

Свое название "хром" от греческого "цвет" получил из-за разнообразной окраски его соединений.

Титан – блестящий, серебристого цвета металл, не тускнеющий на воздухе. Отличается высокой химической стойкостью.

Титан не испытывает коррозии даже в морской воде.

Температура рекристаллизационного отжига 650°С, температура плавления 1668°С.

Титан – металл прочный и легкий.

Вредными примесями титана и его сплавов являются азот, кислород и углерод.

Азот и кислород, повышая прочность, резко снижают пластичность. Содержание азота допустимо не более 0,25 процентов, кислорода не более 0,50 процентов.

Углерод затрудняет обработку резанием, давлением и сварку титана и его сплавов, поэтому примесь углерода не должна превышать 0,15 процента.

Самыми распространенными являются сплавы титана с алюминием и хромом или с алюминием и ванадием. Имеются сплавы с железом, молибденом, марганцем. Эти сплавы выпускаются в виде различных полуфабрикатов: плит, полос, прутков, труб, проката, проволоки.

Титановые сплавы применяются в химической, авиационной, машиностроительной промышленности. Из них изготовляют резервуары, трубопроводы для кислот и активных газов, жаропрочные материалы при рабочих температурах до 500°С.

Некоторые сплавы необходимо подогревать при штамповке, гибке и т.п. что является их недостатком.

Недостатком является и возможность использования дуговой сварки только в среде нейтральных газов (аргона и гелия). Однако возможны роликовая и точечная сварка и без защиты нейтральными газами.

Для художественных целей титан применяется в качестве материала для монументов и иных работ не только в экстерьерных, но и в интерьерных условиях.

Марганец – металл твердый, темного цвета. Температуру плавления 1230°С, температура кипения 2200°С.

Применяется в доменном производстве при получении белого (передельного) чугуна, так как присутствие марганца задерживает выделение графита.

Применяется и как добавка при производстве специальных легированных сталей. Он уменьшает коробление стали при закалке, повышает режущие свойства и стойкость на истирание. Окислы марганца применяются как красители для получения эмалей и цветного стекла фиолетового цвета, а также для приготовления коричневых, зеленых и фиолетовых красок.

Кобальт – металл серебристо-белого цвета с розоватым отблеском. Температура плавления 1444°С.

Кобальт растворяется в азотной кислоте, стоек против серной и соляной кислот.

Применяется в качестве присадки при производстве быстрорежущих инструментальных сталей.

В последнее время его начали применять в качестве гальванического покрытия вместе с серебром для ювелирных изделий. Покрытия серебро-кобальт более прочны, чем из чистого серебра.

В художественной промышленности кобальт применяется также в виде кобальтовой сини, т.е. сплава закиси кобальта с поташем и кварцевым песком. Кобальтовая синь употребляется как краска для горячей эмали, стекла, фарфора и фаянса, придавая им красивый синий цвет.

Кобальтовые синие краски были известны в Древнем Египте и Китае. Кроме синих красок, из кобальта вместе с хромом и цинком получают фиолетовые и зеленые краски.

Многие цветные металлы (Cu, Al, Mg, Pb, Sn, Zn, Ti) и их сплавы обладают рядом ценных свойств: хорошей пластичностью, вязкостью, высокой электро- и теплопроводностью, прочностью, низкой плотностью, коррозионной стойкостью и другими достоинствами. Благодаря этим качествам цветные металлы и их сплавы занимают важное место среди конструкционных материалов.

Из цветных металлов в автомобилестроении в чистом виде и в виде сплавов широко используются алюминий, медь, свинец, олово, магний, цинк, титан.

Алюминий и его сплавы

Алюминий – металл серебристо-белого цвета, характеризуется низкой плотностью, высокой электропроводностью, температура плавления 660°С. Механические свойства алюминия невысокие, поэтому в чистом виде как конструкционный материал применяется ограниченно.

Для повышения физико-механических и технологических свойств алюминий легируют различными элементами (Cu, Сr, Mg, Si, Zn, Mn, Ni).

В зависимости от содержания постоянных примесей различают:

      алюминий особой чистоты марки А999 (0,001 % примесей);

      алюминий высокой чистоты – А935, А99, А97, А95 (0,005…0,5 % примесей);

      технический алюминий – А35, А3, А7, А5, А0 (0,15…0,5 % примесей).

Технический алюминий выпускают в виде полуфабрикатов для дальнейшей переработки в изделия. Алюминий высокой чистоты применяют для изготовления фольги, токопроводящих и кабельных изделий.

Сплавы на основе алюминия классифицируются по следующим признакам:

      по технологии изготовления;

      по степени упрочнения после термической обработки;

      по эксплуатационным свойствам.

Деформируемые сплавы . К неупрочняемым термической обработкой относятся сплавы:

      алюминия с марганцем марки АМц;

      алюминия с магнием марок АМг; АМгЗ, АМг5В, АМг5П, АМг6.

Эти сплавы обладают высокой пластичностью, коррозионной стойкостью, хорошо штампуются и свариваются, но имеют невысокую прочность. Из них изготовляют бензиновые баки, проволоку, заклепки, а также сварные резервуары для жидкостей и газов, детали вагонов.

В группе деформируемых алюминиевых сплавов, упрочняемых термической обработкой, различают сплавы:

      нормальной прочности;

      высокопрочные сплавы;

      жаропрочные сплавы;

      сплавы для ковки и штамповки.

Сплавы нормальной прочности. К ним относятся сплавы системы Алюминий + Медь + Магний (дуралюмины), которые маркируются буквой Д. Дюралюмины (Д1, Д16, Д18) характеризуются высокой прочностью, достаточной твердостью и вязкостью. Для упрочнения сплавов применяют закалку с последующим охлаждением в воде. Закаленные дуралюмины подвергаются старению, что способствует увеличению их коррозионной стойкости.

Дуралюмины широко используются в авиастроении: из сплава Д1 изготовляют лопасти винтов, из Д16 – несущие элементы фюзеляжей самолетов, сплав Д18 – один из основных заклепочных материалов.

Высокопрочные сплавы алюминия (В93, В95, В96) относятся к системе Алюминий+Цинк+Магний+Медь. В качестве легирующих добавок используют марганец и хром, которые увеличивают коррозионную стойкость и эффект старения сплава. Для достижения требуемых прочностных свойств, сплавы закаливают с последующим старением. Высокопрочные сплавы по своим прочностным показателям превосходят дюралюмины, однако менее пластичны и более чувствительны к концентраторам напряжений (надрезам). Из этих сплавов изготовляют высоконагруженные наружные конструкции в авиастроении – детали каркасов, шасси и обшивки.

Жаропрочные сплавы алюминия (АК4-1, Д20) имеют сложный химический состав, легированы железом, никелем, медью и другими элементами. Жаропрочность сплавам придает легирование, замедляющее диффузионные процессы.

Детали из жаропрочных сплавов используются после закалки и искусственного старения и могут эксплуатироваться при температуре до 300°С.

Сплавы для ковки и штамповки (АК2, АК4, АК6, АК8) относятся к системе Алюминий+Медь+Магний с добавками кремния. Сплавы применяют после закалки и старения для изготовления средненагруженных деталей сложной формы (АК6) и высоконагруженных штампованных деталей – поршни, лопасти винтов, крыльчатки насосов и др.

Литейные сплавы. Для изготовления деталей методом литья применяют алюминиевые сплавы систем Al-Si, Al-Cu, Al-Mg. Для улучшения механических свойств сплавы легируют титаном, бором, ванадием. Главным достоинством литейных сплавов является высокая жидкотекучесть, небольшая усадка, хорошие механические свойства.

Медь и ее сплавы

Главными достоинствами меди как машиностроительного материала являются высокие тепло- и электропроводность, пластичность, коррозионная стойкость в сочетании с достаточно высокими механическими свойствами. К недостаткам меди относят низкие литейные свойства и плохую обрабатываемость резанием.

Легирование меди осуществляется с целью придания сплаву требуемых механических, технологических, антифрикционных и других свойств. Химические элементы, используемые при легировании, обозначают в марках медных сплавов следующими индексами:

Медные сплавы классифицируют по следующим признакам:

по химическому составу на:

    • медноникелевые сплавы;

по технологическому назначению на:

      деформируемые;

      литейные;

по изменению прочности после термической обработки на:

      упрочняемые;

      неупрочняемые.

Латуни – сплавы меди, а которых главным легирующим элементом является цинк.

В зависимости от содержания легирующих компонентов различают:

      простые (двойные) латуни;

      многокомпонентные (легированные) латуни.

Простые латуни маркируют буквой «Л» и цифрами, показывающими среднее содержание меди в сплаве. Например, сплав Л90 – латунь, содержащая 90 % меди, остальное – цинк.

В марках легированных латуней группы букв и цифр, стоящих после них, обозначают легирующие элементы и их содержание в процентах. Например, сплав ЛАНКМц75-2-2,5-0,5-0,5 – латунь алюминиевоникелькремнистомарганцевая, содержащая 75 % меди, 2 % алюминия, 2,5 % никеля, 0,5 % кремния, 0,5 % марганца, остальное – цинк.

В зависимости от основного легирующего элемента различают алюминиевые, кремнистые, марганцевые, никелевые, оловянистые, свинцовые и другие латуни.

Бронзы – это сплавы меди с оловом и другими элементами (алюминий, марганец, кремний, свинец, бериллий). В зависимости от содержания основных компонентов, бронзы делятся на:

      оловянные, главным легирующим элементом которых является олово;

      безоловянные (специальные), не содержащие олова.

Бронзы маркируют буквами «Бр» и буквенные индексы элементов, входящих в состав. Затем следуют цифры, обозначающие среднее содержание элементов в процентах (цифру, обозначающую содержание меди в бронзе, не ставят). Например, сплав марки БрОЦС5-5-5 означает, что бронза содержит олова, свинца и цинка по 5 %, остальное – медь (85 %).

В зависимости от технологии переработки оловянные и специальные бронзы подразделяют на:

      деформируемые;

      литейные;

      специальные.

Деформируемые оловянные бронзы содержат до 8 % олова. Эти бронзы используют для изготовления пружин, мембран и других деформируемых деталей. Литейные бронзы содержат свыше 6 % олова, обладают высокими антифрикционными свойствами и достаточной прочностью; их используют для изготовления ответственных узлов трения (вкладыши подшипников скольжения).

Специальные бронзы включают в свой состав алюминий, никель, кремний, железо, бериллий, хром, свинец и другие элементы. В большинстве случаев название бронзы определяется основным легирующим компонентом.

Титан и его сплавы

Титановые сплавы классифицируют по:

      технологическому назначению на литейные и деформируемые;

      механическим свойствам – низкой (до 700 МПа), средней (700…1000 МПа) и высокой (более 1000 МПа) прочности;

      эксплуатационным характеристикам – жаропрочные, химически стойкие и др.;

      отношению к термической обработке – упрочняемые и неупрочняемые;

      структуре (α-, α+β- и β-сплавы).

Деформируемые титановые сплавы по механической прочности выпускаются под марками:

      низкой прочности – ВТ1;

      средней прочности – ВТ3, ВТ4, ВТ5;

      высокой прочности ВТ6, ВТ14, ВТ15 (после закалки и старения).

Для литья применяются сплавы, аналогичные по составу деформируемым сплавам (ВТ5Л, ВТ14Л), а также специальные литейные сплавы.

Магний и его сплавы

Главным достоинством магния как машиностроительного материала являются низкая плотность, технологичность. Однако его коррозионная стойкость во влажных средах, кислотах, растворах солей крайне низка. Чистый магний практически не используют в качестве конструкционного материала из-за его недостаточной коррозионной стойкости. Он применяется в качестве легирующей добавки к сталям и чугунам и в ракетной технике при создании твердых топлив.

Эксплуатационные свойства магния улучшают легированием марганцем, алюминием, цинком и другими элементами. Легирование способствует повышению коррозионной стойкости (Zr, Mn), прочности (Al, Zn, Mn, Zr), жаропрочности (Th) магниевых сплавов, снижению окисляемости их при плавке, литье и термообработке.

Сплавы на основе магния классифицируют по:

      механическим свойствам – невысокой, средней прочности; высокопрочные, жаропрочные;

      технологии переработки – литейные и деформируемые;

      отношению к термической обработке – упрочняемые и неупрочняемые термической обработкой.

Маркировка магниевых сплавов состоит из буквы, обозначающей соответственно сплав (М), и буквы, указывающей способ технологии переработки (А – для деформируемых, Л – для литейных), а также цифры, обозначающей порядковый номер сплава.

Деформируемые магниевые сплавы MA1, MA2, МА3, MA8 применяют для изготовления полуфабрикатов – прутков, труб, полос и листов, а также для штамповок и поковок.

Литейные магниевые сплавы МЛ1, МЛ2, МЛ3, МЛ4, МЛ5, МЛ6 нашли широкое применение для производства фасонных отливок. Некоторые сплавы МЛ применяют для изготовления высоконагруженных деталей в авиационной и автомобильной промышленности: картеры, корпуса приборов, колесные диски, фермы шасси самолетов.

Ввиду низкой коррозионной стойкости магниевых сплавов изделия и детали из них подвергают оксидированию с последующим нанесением лакокрасочных покрытий.

Баббиты и припои

Для изготовления деталей, эксплуатируемых в условиях трения скольжения, используют сплавы, характеризующиеся низким коэффициентом трения, прирабатываемостью, износостойкостью, малой склонностью к заеданию.

К группе антифрикционных материалов относят сплавы на основе олова, свинца и цинка.

Баббиты – антифрикционные материалы на основе олова и свинца.

В состав баббитов вводятся легирующие элементы, придающие им специфические свойства: медь увеличивает твердость и ударную вязкость; никель – вязкость, твердость, износостойкость; кадмий – прочность и коррозионную стойкость; сурьма – прочность сплава.

Баббиты применяют для заливки вкладышей подшипников скольжения, работающих при больших окружных скоростях и при переменных и ударных нагрузках.

По химическому составу баббиты классифицируют на группы:

      оловянные (Б83, Б88),

      оловянно-свинцовые (БС6, Б16);

      свинцовые (БК2, БКА).

Лучшими антифрикционными свойствами обладают оловянные баббиты.

Баббиты на основе свинца имеют несколько худшие антифрикционные свойства, чем оловянные, но они дешевле и менее дефицитны. Свинцовые баббиты применяют в подшипниках, работающих в легких условиях.

В конструктивных элементах подвижного состава железных дорог используют подшипники скольжения из кальциевых баббитов.

В марках баббитов цифра показывает содержание олова. Например, баббит БС6 содержит по 6 % олова и сурьмы, остальное – свинец.

Антифрикционные цинковые ставы (ЦВМ10-5, ЦАМ9-1,5 ) используют для изготовления малонагруженных подшипников скольжения. Такие подшипники успешно заменяют бронзовые при температурах эксплуатации, не превышающих 120 °С.

Цветные металлы и сплавы на их основе применяют в специальных случаях, так как производятся они в значительно меньших количествах, чем черные, а стоимость их существенно выше. Их используют в основном, когда требуется высокая коррозионная стойкость, электро- и теплопроводность, повышенные декоративные качества, а для сплавов на основе алюминия - малый вес конструкций. В строительстве в основном применяют сплавы меди и алюминия; перспективны также сплавы на основе титана.

Медь и сплавы на ее основе. Чистая медь - мягкий (НВ 400 МПа) пластичный металл красноватого цвета, плотностью 8960 кг/м, отличающийся высокой теплопроводностью и электропроводностью. Прочность меди невысока: i?p = 180…240 МПа; температура плавления - 1080 С. У меди большой температурный коэффициент линейного расширения ТКЛР= 17 * 10” КГ (т. е. в 1,7 раза выше, чем у железа). Медь - коррозионно-устойчивый металл: в сухом воздухе медь не окисляется, во влажном - покрывается коричневой оксидной пленкой, защищающей от дальнейшего окисления. При длительном (годы) нахождении меди во влажном воздухе на поверхности образуется устойчивый голубоватый слой основного карбоната меди, называемый патиной.

Медь и ее сплавы относят к числу металлов, известных с глубокой древности, так как встречались в природе в виде самородков, а также достаточно просто выплавлялись из медных руд.

Около 50% меди применяют в электротехнике. В строительстве медные листы толщиной 0,4…0,6 мм используют для устройства красивых и долговечных кровель, водосточных систем и водопроводных труб. Большая часть меди применяется в виде сплавов - латуней и бронз.

Латуни - сплавы меди с цинком (10…40%); хорошо поддаются, прокату, штамповке и вытягиванию. Прочность и твердость более высокая, чем у меди: Rp = 250…600МПа; НВ = 500…700. В строительстве латунь используют для декоративных элементов (поручни, накладки и т. п.) и для санитарно-технических устройств. В некоторых странах (например, Англии) латунные трубы, характеризующиеся высокой теплопроводностью и коррозионной стойкостью, применяют в отопительных и водопроводных системах; такие системы отличаются очень высокой долговечностью.

Бронзы - сплавы меди с оловом (до 10%), алюминием, свинцом и др. Их прочность почти такая же, как у меди, твердость же существенно выше - НВ = 600… 1600. Бронзы обладают хорошими литейными свойствами и коррозионноустойчивы. Применяют для декоративных целей (арматура для дверей и окон и др.), в сантехнике и для специальных целей.

Алюминий и сплавы на его основе. Алюминий - легкий серебристый металл (плотность 2700 кг/м) с низкой прочностью (Rp - = 80… 100 МПа) и низкой твердостью (НВ 200); характеризуется высокой электро- и теплопроводностью [Я = 340 Вт/(м * К)]. У алюминия по сравнению со сталью в 2,5 раза более высокий коэффициент теплового расширения (ТКЛР = 24 * 10). Несмотря на химическую активность, алюминий стоек к атмосферной коррозии благодаря защитным свойствам оксидной пленки, образующейся на его поверхности.

Алюминий в промышленных масштабах начали производить лишь в XX в. из-за технологических трудностей производства. В настоящее время около 25 % производимого алюминия используется в строительстве. В чистом виде алюминий практически не применяют. Для повышения прочности, твердости и технологических свойств в него вводят легирующие добавки (Mn, Cu, Mg, Si, Fe идр.). Основные виды алюминиевых сплавов - литейные и деформируемые.
Литейные алюминиевые сплавы (силумины) - сплавы алюминия с кремнием, магнием и другими элементами - обладают высокими литейными качествами; повышенной по сравнению с алюминием прочностью (/?рдо200 МПа) и твердостью (НВ = 500…700) при достаточно высокой пластичности.

Деформируемые алюминиевые сплавы (дюралюмины) составляют около 80 % производства алюминиевых сплавов. Это большая группа разнообразных по составу сплавов с высокими механическими свойствами (Rp = 200…500 МПа) (табл. 7.4), но пониженной коррозионной стойкостью.

Дюралюмины легко перерабатываются прокаткой, штамповкой, прессованием и сваркой в листы, трубы и профили самой сложной формы. В строительстве эти сплавы широко применяют для изготовления оконных и дверных переплетов и коробок, в качестве кровельного материала, для наружной облицовки зданий, для трехслойных панелей с пенопластовым или минераловатным утеплителем, алюминиевой фольги строительного назначения и для легких сборно-разборных конструкций, используемых для каркасов павильонов различного назначения.

Основное достоинство алюминиевых сплавов - малый вес (плотность алюминия почти в три раза ниже плотности стали) при достаточно высокой прочности в сочетании с коррозионной стойкостью.

Отрицательными свойствами алюминиевых сплавов являются почти в три раза более низкий, чем у стали, модуль упругости (Е= 0,7 * 10 МПа), низкая твердость и высокий коэффициент температурного расширения.

Цинк - синевато-белый металл, плавится при сравнительно низкой температуре - 420 °С, а при 906 °С - кипит. В чистом виде цинк был получен в XVIII в. В настоящее время мировое производство цинка составляет около 7 млн т/год. Основная цель использования цинка - защита стали от коррозии.

В ряду активности металлов цинк стоит перед железом и его сплавами. Но при этом окисление цинка при температурах до 200 °С происходит замедленно, так как окислению препятствует образующаяся на его поверхности пленка гидрооксикарбоната. Эти два обстоятельства (активность цинка и его замедленная коррозия) используются для защиты стали от коррозии путем цинкования и получения из цинка и его сплавов коррозионно-устойчивых материалов и изделий.
Более половины производимого цинка применяют для цинкования. Наибольшее распространение получил метод горячего цинкования, предложенный в 1837 г. инженером Сорелем. Суть метода сводится к погружению стального изделия в расплав цинка. При этом на поверхности стали образуется слой сложных соединений цинка с железом толщиной 80… 100 мкм. Этот метод в основном используют для получения оцинкованных стальных листов. Применяют и другие методы цинкования: электролитический, распыление, окраска цин-косодержащими составами и др.

Цинк как самостоятельный материал в строительстве применяют в виде листового кровельного материала, известного под названием цинк-титан. Для устранения хрупкости к цинку в этом случае добавляют очень небольшое (менее 1%) количество меди и титана. Цинк-титановые кровли имеют благородный светло-серый цвет; возможно анодирование поверхности листов для получения асфальтового цвета. Долговечность таких кровель - не менее 100 лет.

При устройстве кровель из цинковых листов из-за высокого коэффициента термического расширения цинка необходимо предусматривать возможность подвижки элементов кровли друг относительно друга. Примером кровель из цинковых листов могут служить кровли Дворца спорта в Лужниках, гостиницы «Балчуг» и Исторического музея в Москве.

Титан (титановые сплавы) приобретают в последнее время все большую популярность; они сочетают в себе низкую плотность (4500 кг/м3); высокую прочность (Rp = 700… 1200 МПа) и твердость (НВ > 1000) и высокую коррозионную стойкость. Из-за очень высокой стоимости и дефицитности титан в строительстве применяют только для Уникальных сооружений (например, памятник космонавтам у станции метро «ВДНХ» в Москве).

Алюминий (ГОСТ 4784-74) - один из самых распространенных элементов в природе. Температура его плавления 650 °С. Он обладает малой плотностью (2,7-103 кг/м3), высокой электропроводностью, коррозионной стойкостью в окислительных средах, стойкостью против перехода в хрупкое состояние при низких температурах. В производстве используется как в чистом виде (0,5- 2% примесей), так и в виде сплавов.

Сплавы алюминия с медью и некоторыми другими элементами образуют сплавы типа дюралюминов (маркируются буквой Д) и относятся к термически упрочняемым. Например, сплав Д16 содержит 3,8-4% Си, 1,2-1,8% Mg, 0,3-0,9% Мп, применяется в самолетостроении. Сплавы алюминия с кремнием называются силуминами. Например, сплав AJI2 содержит 10-13% Si, остальное - алюминий. Силумины обладают хорошими литейными свойствами и используются для отливки сложных деталей.

Несмотря на низкую температуру плавления, алюминий и его сплавы при нагреве перед резкой образуют на своей поверхности пленку тугоплавких окислов АЬОз с температурой плавления 2050°С. Кроме того, окисная пленка на поверхности алюминия изолирует металл от контакта с кислородом, а высокая теплопроводность препятствует нагреву металла перед резкой.

Итак алюминий и его сплавы не удовлетворяют основным условиям кислородной резки. Аналогично ведет себя магний и его сплавы. Для их резки необходим мощный концентрированный источник тепла. Попытки применить кислородно-флюсовую резку алюминия не привели к положительным результатам. При низкой температуре плавления длительный разогрев газовым пламенем приводил к широкому резу с оплавленными кромками. Наилучшие результаты по резке алюминия и его сплавов дает плазменная резка, при этом металл режется со скоростью во много раз превышающей кислородную резку стали аналогичных толщин.

Медь (ГОСТ 859-78) обладает высокими теплопроводностью (в 6 раз выше, чем у железа) и теплоемкостью, что создает большие трудности при нагреве ее газовым пламенем резака перед резкой. Температура плавления меди 1083°С, плотность 8,9-103 кг/м3.

В зависимости от химического состава имеются следующие марки меди - в скобках указана чистота в процентах, не менее: МООк (99,99), МОку (99,97), МОк (99,95), М1к (99,90), М1р (99,90), М1ф (99,90), М2р (99,70), МЗ (99,50), МЗр (99,50), М4 (99,0).

В машиностроении в чистом виде медь используется редко, главным образом в качестве трубопроводов, присадочного материала или токоведущих деталей машин. Широко применяются сплавы на основе меди такие, как бронза, латунь.

Бронза представляет собой сплав меди с оловом, алюминием, кремнием, марганцем и цинком. В зависимости от содержания олова бронзы делятся на безоловянные литейные и оловянные, обрабатываемые давлением.

Благодаря высоким антифрикционным свойствам и устойчивости к коррозии бронза широко применяется при изготовлении деталей, работающих на трение, и в некоторых агрессивных средах.

Латунь - это сплав меди и цинка. Для получения различных механических и физических свойств в латуни вводят марганец, алюминий, железо, никель и другие элементы. Из латуни изготовляют коррозионно-стойкие детали, арматуру, подшипники, зубчатые колеса, червячные винты и др.

Обычная кислородная резка меди и ее сплавов невозможна из-за низкого тепловыделения в процессе ее окисления и высокой теплопроводности. Медь хорошо поддается плазменно-дуговой резке и хуже кислородно-флюсовой. Последний способ требует предварительного подогрева до температуры 400-900°С.

Титан (ГОСТ 19807-74) обладает комплексом уникальных свойств. Температура плавления его 1665 °С, т. е. выше, чем у железа и никеля, а плотность 4,5-103 кг/м3 - почти вдвое меньше.

Титан отличается высокой прочностью при высоких температурах, большей прочностью и коррозионной стойкостью, чем нержавеющие стали. По распространению в природе занимает одно из первых мест среди важнейших металлов. Пока он еще дорогой - в пять раз дороже нержавеющей стали.

С точки зрения разрезаемости титан полностью отвечает условиям кислородной резки, имея сравнительно низкую температуру воспламенения в кислороде (1100 °С) и большое тепловыделение при окислении. Титан режется с большой скоростью, в несколько раз превышающей скорость резки низкоуглеродистой стали.

© 2024 sun-breeze.ru
Новые идеи бизнеса - Животные и растения. Заработок в интернете. Автобизнес