Эквализация гистограммы изображения. Предварительная обработка изображений (Preliminary image processing)

Существует три основных метода повышения контраста изображения:

  • линейная растяжка гистограммы (линейное контрастирование),
  • нормализация гистограммы,
  • выравнивание (линеаризация или эквализация, equalization) гистограммы.

Линейная растяжка сводится к присваиванию новых значений интенсивности каждому пикселю изображения. Если интенсивности исходного изображения изменялись в диапазоне от до , тогда необходимо линейно "растянуть" указанный диапазон так, чтобы значения изменялись от 0 до 255. Для этого достаточно пересчитать старые значения интенсивности для всех пикселей согласно формуле , где коэффициенты просто вычисляются, исходя из того, что граница должна перейти в 0, а – в 255.

Нормализация гистограммы в отличие от предыдущего метода обеспечивает растяжку не всего диапазона изменения интенсивностей, а только его наиболее информативной части. Под информативной частью понимается набор пиков гистограммы, т.е. интенсивности, которые чаще остальных встречаются на изображении. Бины, соответствующие редко встречающимся интенсивностям, в процессе нормализации отбрасываются, далее выполняется обычная линейная растяжка получившейся гистограммы.

Выравнивание гистограмм – это один из наиболее распространенных способов. Цель выравнивания состоит в том, чтобы все уровни яркости имели бы одинаковую частоту, а гистограмма соответствовала равномерному закону распределения. Допустим, что задано изображение в оттенках серого, которое имеет разрешение пикселей. Количество уровней квантования яркости пикселей (число бинов) составляет . Тогда в среднем на каждый уровень яркости должно выпадать пикселей. Базовая математика лежит в сопоставлении двух распределений. Пусть – случайные величины, описывающие изменение интенсивности пикселей на изображениях, – плотность распределения интенсивности на исходном изображении, – желаемая плотность распределения. Необходимо найти преобразование плотностей распределения , которое позволило бы получить желаемую плотность:

Обозначим через и интегральные законы распределения случайных величин и . Из условия вероятностной эквивалентности следует, что . Распишем интегральный закон распределения по определению:

Отсюда получаем, что

Осталось выяснить, как оценить интегральный закон распределения . Для этого необходимо сначала построить гистограмму исходного изображения, затем нормализовать полученную гистограмму, разделив величину каждого бина на общее количество пикселей . Значения бинов можно рассматривать как приближенное значение функции плотности распределения . Таким образом, значение интегральной функции распределения можно представить как сумму следующего вида:

Построенную оценку можно использовать для вычисления новых значений интенсивности. Заметим, что перечисленные преобразования гистограмм можно применять не только ко всему изображению, но и к отдельным его частям.

В библиотеке OpenCV реализована функция equalizeHist , которая обеспечивает повышение контрастности изображения посредством выравнивания гистограммы [ , ]. Прототип функции показан ниже.

void equalizeHist(const Mat& src, Mat& dst)

Функция работает в четыре этапа:

Далее приведем пример программы, обеспечивающей выравнивание гистограммы. Приложение принимает в качестве аргумента командной строки название исходного изображения. После выполнения операции выравнивания гистограммы выполняется отображение исходного изображения 1 Использовано изображение, входящее в состав базы PASACL VOC 2007. , переведенного в оттенки серого (рис. 7.11 , слева), и изображения с выровненной гистограммой (рис. 7.11 , справа).

#include #include using namespace cv; const char helper = "Sample_equalizeHist.exe \n\ \t - image file name\n"; int main(int argc, char* argv) { const char *initialWinName = "Initial Image", *equalizedWinName = "Equalized Image"; Mat img, grayImg, equalizedImg; if (argc < 2) { printf("%s", helper); return 1; } // загрузка изображения img = imread(argv, 1); // преобразование в оттенки серого cvtColor(img, grayImg, CV_RGB2GRAY); // выравнивание гистограммы equalizeHist(grayImg, equalizedImg); // отображение исходного изображения и гистограмм namedWindow(initialWinName, CV_WINDOW_AUTOSIZE); namedWindow(equalizedWinName, CV_WINDOW_AUTOSIZE); imshow(initialWinName, grayImg); imshow(equalizedWinName, equalizedImg); waitKey(); // закрытие окон destroyAllWindows(); // осовобождение памяти img.release(); grayImg.release(); equalizedImg.release(); return 0; }


Рис. 7.11.

Выполните обработку изображений, визуализацию и анализ

Image Processing Toolbox™ обеспечивает исчерпывающий набор ссылочно-стандартных алгоритмов и приложений рабочего процесса для обработки изображений, анализа, визуализации и разработки алгоритмов. Можно выполнить сегментацию изображений, повышение качества изображения, шумоподавление, геометрические преобразования, и отобразить регистрацию с помощью глубокого обучения и традиционных методов обработки изображений. Обработка поддержек тулбокса 2D, 3D, и произвольно больших изображений.

Приложения Image Processing Toolbox позволяют вам автоматизировать общие рабочие процессы обработки изображений. Можно в интерактивном режиме сегментировать данные изображения, сравнить регистрационные методы изображений и пакетно обработать большие наборы данных. Функции визуализации и приложения позволяют вам исследовать изображения, 3D объемы и видео; настройте контраст; создайте гистограммы; и управляйте видимыми областями (КОРОЛИ).

Можно ускорить алгоритмы путем выполнения их на многоядерных процессорах и графических процессорах. Много функций тулбокса поддерживают генерацию кода C/C++ для развертывания системы компьютерного зрения и анализа прототипа.

Начало работы

Изучите основы Image Processing Toolbox

Импортируйте, экспортируйте, и преобразование

Импорт данных изображения и экспорт, преобразование типов изображения и классов

Отображение и исследование

Интерактивные инструменты для отображения изображений и исследования

Геометрическое преобразование и регистрация изображений

Масштабируйте, вращайте, выполните другие преобразования N-D и выровняйте изображения с помощью корреляции интенсивности, соответствия функции или отображения контрольной точки

Отобразите фильтрацию и улучшение

Контрастная корректировка, морфологическая фильтрация, deblurring, основанная на ROI обработка

Отобразите сегментацию и анализ

Анализ области, анализ структуры, пиксель и статистика изображений

Глубокое обучение для обработки изображений

Выполните задачи обработки изображений, такие как удаление шума изображения и создание изображений с высоким разрешением от изображений низких разрешений, с помощью сверточных нейронных сетей (требует Deep Learning Toolbox™),

При всех поэлементных преобразованиях происходит изменение закона распределения вероятностей, описывающего изображение. Рассмотрим механизм этого изменения на примере произвольного преобразования с монотонной характеристикой, описываемой функцией (рис.2.8), имеющей однозначную обратную функцию . Предположим, чтослучайная величина подчиняется плотности вероятности . Пусть - произвольный малый интервал значений случайной величины , а - соответствующий ему интервал преобразованной случайной величины .

Попадание величины в интервал влечет за собой попадание величины в интервал , что означает вероятностную эквивалентность этих двух событий. Поэтому, учитывая малость обоих интервалов, можно записать приближенное равенство:

,

где модули учитывают зависимость вероятностей от абсолютных длин интервалов (и независимость от знаков приращений и ). Вычисляя отсюда плотность вероятности преобразованной величины, подставляя вместо его выражение через обратную функцию и выполняя предельный переход при (и, следовательно, ), получаем:

. (2.4)

Это выражение позволяет вычислить плотность вероятности продукта преобразования, которая, как видно из него, не совпадает с плотностью распределения исходной случайной величины. Ясно, что существенное влияние на плотность оказывает выполняемое преобразование, поскольку в (2.4) входит его обратная функция и ее производная.

Соотношения становятся несколько сложнее, если преобразование описывается не взаимно-однозначной функцией . Примером такой более сложной характеристики с неоднозначной обратной функцией может служить пилообразная характеристика рис. 2.4, к. Однако, в общем, смысл вероятностных преобразований при этом не изменяется.

Все рассмотренные в данной главе поэлементные преобразования изображений можно рассмотреть с точки зрения изменения плотности вероятности, описываемого выражением (2.4). Очевидно, что ни при одном из них плотность вероятности выходного продукта не будет совпадать с плотностью вероятности исходного изображения (за исключением, конечно, тривиального преобразования ). Нетрудно убедиться, что при линейном контрастировании сохраняется вид плотности вероятности, однако в общем случае, т. е. при произвольных значениях параметров линейного преобразования, изменяются параметры плотности вероятности преобразованного изображения.

Определение вероятностных характеристик изображений, прошедших нелинейную обработку, является прямой задачей анализа. При решении практических задач обработки изображений может быть поставлена обратная задача: по известному виду плотности вероятности и желаемому виду определить требуемое преобразование , которому следует подвергнуть исходное изображение. В практике цифровой обработки изображений часто к полезному результату приводит преобразование изображения к равновероятному распределению . В этом случае

где и - минимальное и максимальное значения яркости преобразованного изображения. Определим характеристику преобразователя, решающего данную задачу. Пусть и связаны функцией (2.2), а и - интегральные законы распределения входной и выходной величин. Учитывая (2.5), находим:

.

Подставляя это выражение в условие вероятностной эквивалентности

после простых преобразований получаем соотношение

представляющее собой характеристику (2.2) в решаемой задаче. Согласно (2.6) исходное изображение проходит нелинейное преобразование, характеристика которого определяется интегральным законом распределения самого исходного изображения. После этого результат приводится к заданному динамическому диапазону при помощи операции линейного контрастирования.

Аналогичным образом могут быть получены решения других подобных задач, в которых требуется привести законы распределения изображения к заданному виду. В приведена таблица таких преобразований. Одно из них, так называемая гиперболизация распределения, предполагает приведение плотности вероятности преобразованного изображения к гиперболическому виду:

(2.7)

Если учесть, что при прохождении света через глаз входная яркость логарифмируется его сетчаткой, то итоговая плотность вероятности оказывается равномерной. Таким образом, отличие от предыдущего примера заключается в учете физиологических свойств зрения. Можно показать, что изображение с плотностью вероятности (2.7) получается на выходе нелинейного элемента с характеристикой

также определяемой интегральным законом распределения исходного изображения.

Таким образом, преобразование плотности вероятности предполагает знание интегрального распределения для исходного изображения. Как правило, достоверные сведения о нем отсутствуют. Использование для рассматриваемых целей аналитических аппроксимаций также малопригодно, т.к. их небольшие отклонения от истинных распределений могут приводить к существенному отличию результатов от требуемых. Поэтому в практике обработки изображений преобразование распределений выполняют в два этапа.

На первом этапе измеряется гистограмма исходного изображения. Для цифрового изображения, шкала яркостей которого, например, принадлежит целочисленному диапазону 0...255, гистограмма представляет собой таблицу из 256 чисел. Каждое из них показывает количество точек в кадре, имеющих данную яркость. Разделив все числа этой таблицы на общий размер выборки, равный числу используемых точек изображения, получают оценку распределения вероятностей яркости изображения. Обозначим эту оценку . Тогда оценка интегрального распределения получается по формуле:

.

На втором этапе выполняется само нелинейное преобразование (2.2), обеспечивающее необходимые свойства выходного изображения. При этом вместо неизвестного истинного интегрального распределения используется его оценка, основанная на гистограмме. С учетом этого все методы поэлементного преобразования изображений, целью которых является видоизменение законов распределения, получили название гистограммных методов. В частности, преобразование, при котором выходное изображение имеет равномерное распределение, называется эквализацией (выравниванием) гистограмм.

Отметим, что процедуры преобразования гистограмм могут применяться как к изображению в целом, так и к отдельным его фрагментам. Последнее может быть полезным при обработке нестационарных изображений, содержание которых существенно различается по своим характеристикам на различных участках. В этом случае лучшего эффекта можно добиться, применяя гистограммную обработку к отдельным участкам.

Использование соотношений (2.4)-(2.8) , справедливых для изображений с непрерывным распределением яркости, является не вполне корректным для цифровых изображений. Необходимо иметь в виду, что в результате обработки не удается получить идеальное распределение вероятностей выходного изображения, поэтому полезно проводить контроль его гистограммы.

а) исходное изображение

б) результат обработки

Рис. 2.9. Пример эквализации изображения

На рис.2.9 приведен пример эквализации, выполненной в соответствии с изложенной методикой. Характерной чертой многих изображений, получаемых в реальных изображающих системах, является значительный удельный вес темных участков и сравнительно малое число участков с высокой яркостью. Эквализация призвана откорректировать картину, выровняв интегральные площади участков с различными яркостями. Сравнение исходного (рис.2.9.а) и обработанного (рис.2.9.б) изображений показывает, что происходящее при обработке перераспределение яркостей приводит к улучшению визуального восприятия.

При всех поэлементных преобразованиях происходит изменение закона распределения вероятностей, описывающего изображение. При линейном контрастировании сохраняется вид плотности вероятности, однако в общем случае, т.е. при произвольных значениях параметров линейного преобразования, изменяются параметры плотности вероятности преобразованного изображения.

Определение вероятностных характеристик изображений, прошедших нелинейную обработку, является прямой задачей анализа. При решении практических задач обработки изображений может быть поставлена обратная задача: по известному виду плотности вероятности p f (f ) и желаемому виду p g (g ) определить требуемое преобразование g = ϕ(f ), которому следует подвергнуть исходное изображение. В практике цифровой обработки изображений часто к полезному результату приводит преобразование изображения к равновероятному распределению. В этом случае

где g min и g max – минимальное и максимальное значения яркости преобразованного изображения. Определим характеристику преобразователя, решающего данную задачу. Пусть f и g связаны функцией g (n , m ) = j(f (n , m )), а P f (f ) и Pg (g ) – интегральные законы распределения входной и выходной яркостей. Учитывая (6.1), находим:

Подставляя это выражение в условие вероятностной эквивалентности

после простых преобразований получаем соотношение

представляющее собой характеристику g (n , m ) = j(f (n , m )) в решаемой задаче. Согласно (6.2) исходное изображение проходит нелинейное преобразование, характеристика которого P f (f ) определяется интегральным законом распределения исходного изображения. После этого результат приводится к заданному динамическому диапазону при помощи операции линейного контрастирования.

Таким образом, преобразование плотности вероятности предполагает знание интегрального распределения для исходного изображения. Как правило, достоверные сведения о нем отсутствуют. Аппроксимация аналитическими функциями, вследствие ошибок аппроксимации, может приводить к существенному отличию результатов от требуемых. Поэтому в практике обработки изображений преобразование распределений выполняют в два этапа.



На первом этапе измеряется гистограмма исходного изображения. Для цифрового изображения, шкала яркостей которого, например, принадлежит целочисленному диапазону , гистограмма представляет собой таблицу из 256 чисел. Каждое из них показывает количество точек в изображении (кадре), имеющих данную яркость. Разделив все числа этой таблицы на общий размер выборки, равный числу отсчетов в изображении, получают оценку распределения вероятностей яркости изображения. Обозначим эту оценку qp f (f q ), 0 ≤ f q ≤ 255. Тогда оценка интегрального распределения получается по формуле:

На втором этапе выполняется само нелинейное преобразование (6.2), обеспечивающее необходимые свойства выходного изображения. При этом вместо неизвестного истинного интегрального распределения используется его оценка, основанная на гистограмме. С учетом этого все методы поэлементного преобразования изображений, целью которых является видоизменение законов распределения, получили название гистограммных методов. В частности, преобразование, при котором выходное изображение имеет равномерное распределение, называется эквализацией (выравниванием) гистограммы.

Отметим, что процедуры преобразования гистограмм могут применяться как к изображению в целом, так и к отдельным его фрагментам. Последнее может быть полезным при обработке нестационарных изображений, характеристики которых существенно различаются в различных областях. В этом случае лучшего эффекта можно добиться, применяя гистограммную обработку к отдельным участкам – областям интереса. Правда, при этом изменятся значения отсчетов и всех других областей. На рисунке 6.1 приведен пример эквализации, выполненной в соответствии с изложенной методикой.

Характерной чертой многих изображений, получаемых в реальных изображающих системах, является значительный удельный вес темных участков и сравнительно малое число участков с высокой яркостью.

Рисунок 6.1 – Пример эквализации гистграммы изображения: а) исходное изображение и его гистограмма в); б) преобразованное изображение и его гистограмма г)

Эквализация гистограммы приводит к выравниванию интегральных площадей равномерно распределенных диапазонов яркостей. Сравнение исходного (рисунок 6.1 а) и обработанного (рисунок 6.1 б) изображений показывает, что перераспределение яркостей, происходящее при обработке, приводит к улучшению визуального восприятия.

© 2024 sun-breeze.ru
Новые идеи бизнеса - Животные и растения. Заработок в интернете. Автобизнес